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Permeability in chalk depends primarily on porosity but 
also on other factors such as clay and quartz content, and 
can theoretically be described by the Kozeny equation using 
empirically determined constants (Mortensen et al. 1998; 
Røgen & Fabricius 2002). Recent attempts to predict per-
meability from wire-line logs have shown that compressional 
velocity within operative chalk units, defined by specific 
surface and hydraulic properties established from stratigra-
phy and core plugs, can provide excellent well permeability 
predictions (Alam et al. 2011). High-quality predictions de-
pend on a solid knowledge of a multitude of parameters of 
the relevant ‘operative rock types’. The more detailed this a 
priori knowledge is, the better predictions can be achieved. 
But this approach may, or may not, be fast enough for well-
site operations or when core data are lacking. In this study, 
we illustrate a situation for direct permeability prediction if 
only well-site wire-line logs are available.
 This pilot study is based on multivariate descriptor rela-
tionships, specifically aimed at direct permeability predic-
tion, using all immediately available wire-line characteristics 
and/or core (plug) information in a top-down mode with 
sequential exclusion of non-correlated, irrelevant variables. 
We show prediction-model results based on [log] data only 
and on [log + plug] data. Other relevant descriptors could 
be included in an augmented X-matrix, such as quantitative 
core and facies descriptions while still retaining the fast well-
site perspective. However, such data were not included in this 
feasibility study.

Material and methods
Core and log data are from the M-1X well in the Danish part 
of the North Sea; core data were collected in the mid-1990s 
during a multi-disciplinary reservoir study (Dons et al. 1995). 
The M-1X well intersects the Danian Ekofisk Formation and 
the Maastrichtian Tor Formation (Kristensen et al. 1995). 
Core analysis included determinations of conventional He-
porosity and air permeability, whole-rock Ca, Mg, Fe, Mn 
and Sr concentrations, δ13C and δ18O isotope ratios, per cent 
carbonate and per cent non-carbonate. Before data analysis all 
concentrations were corrected to represent weight pr. volume. 
M-1X was drilled in 1971 on the Dan Field structure (Fig. 1), 
and encountered a c. 200 m thick hydrocarbon-bearing zone 

in the chalk. Petrophysical evaluation shows the top reservoir 
is at 1800 m; a gas cap was encountered down to 1880 m and 
the oil–water contact was found at 2036 m. A 192 m long core 
was collected from the hydrocarbon- bearing zone with a core 
recovery of c. 75%. Wire-line logs included gamma ray (GR), 
sonic, formation density, spontaneous potential (SP), calliper, 
induction log (deep resistivity), lateral log (deep resistivity), 
micro-lateral log (shallow resistivity; MLL) and short normal 
resistivity (medium resistivity). Core data depth and well-log 
readings were adjusted and aligned applying an estimated 
common depth shift of 3 m. Log readings were sampled for 
each plug depth to ensure a common plug-log training data set.
 Two chemometric techniques were used, Principal Compo-
nent Analysis (PCA) and Partial Least Squares (PLS) regres-
sion. PCA transforms a matrix of measured data (N samples, 
P variables), X, into sets of projection sub-spaces delineated by 
Principal Components (each a linear combination of all P var-
iables), which display variance-maximised interrelationships 
between samples and variables respectively (Martens & Næs 
1989; Höskuldsson 1996; Esbensen 2010). PCA score plots 
display groupings, or clusters, between samples based on com-
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Fig. 1. Location of well M-1X in the Dan Field in the Danish part of the 
North Sea.
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positional similarities, as described by the variable correlations 
(shown in accompanying loading plots), and also quantify the 
proportion (%) of total data-set variance that can be modelled 
by each component, see Fig. 2. All data analyses in this work are 
based on auto-scaled data [X-X(avr)/std].
 PLS regression replaces the classical multiple linear regres-
sion and allows direct correlations to be modelled between 
y and the multivariate X data, among other compensating 
for debilitating co-linearity between x-variables, (Martens 
& Næs 1989; Höskuldsson 1996; Esbensen 2010). PLS re-
gression models are used extensively in science, technology 
and industry for prediction purposes where the critical suc-
cess factor is proper validation (Esbensen & Geladi 2010). 

Both PCA and PLS result in informative score plots, loading 
plots (PLS: loading-weights) and prediction validation plots, 
which are the prime vehicles for detailed interpretation of 
complex data relationships. PLS components are based on 
[X,y] covariance optimisation, but the scientific interpreta-
tion of the derived scores and loading-weights plots follows 
procedures which are identical to the PCA. Validation was 
based on a test set prepared before modelling: As the M-1X 
data set is limited, it was sorted with respect to the full per-
meability range before being randomly split into two inde-
pendent data sets, i.e. the training versus the test set, secur-
ing a realistic prediction performance validation (Esbensen 
2010; Esbensen & Geladi 2010). 

Fig. 3. PLS-regression model [log + plug] vari-
able set; full training set with Ekofisk, Tor and 
Hod Formations. A: PLS X-space score plot 
(t1-t2). B: Corresponding loading-weights plot 
(w1-w2). C: Modelled y-variance. D: Prediction 
versus reference plot. Two outliers were deleted 
from the original data set. Proportions of total 
data variance modelled shown along each PLS-
component [X%, y%]. GR: gamma ray. DT: 
compressive wave interval travel time. RHOB: 
formation density. IL: induction log. LL: lateral 
log. MLL: micro lateral log. SN: short normal 
resistivity. SP: spontaneous potential. Por: He-
porosity. Perm: air permeability. Ca: calcium. 
Mg: magnesium. Fe: iron. Mn: manganese. Sr: 
strontium. carb: carbonate volume content [cal-
culated]. NonC: non-carbonate [calculated as 
100% – carbonate volume %]. For data analysis, 
concentrations were transformed to weight per 
volume rock values.
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A B Fig. 2. Principal component analysis. A: Score 
and B: loading relations for the full training 
data set (Ekofisk, Tor and Hod Formations). 
The plot models 69% of the total data variance, 
the proportions are shown along each compo-
nent axis (38 + 31%). Legend see Fig. 3.
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Results
There is a marked and fundamental difference in rock prop-
erties between the Ekofisk Formation and the Tor and Hod 
Formations (Fig. 2). The Ekofisk Formation shows a high 
concentration of non-carbonate, Fe and Mn and high GR 
and MLL levels. These characteristics are well-known from 
the North Sea region, which forces a cautious approach to 
data set definition. The developed permeability model may, 
or may not, apply to both the Tor and the Hod Formations 
and the Ekofisk Formation. This will depend on whether the 
formations display similar X-y data structures (covariance re-
lationships).
 A two-component PLS model on the full (log + plug) 
variable set predicts permeability with satisfactory validation 
results as seen in the prediction versus reference plot in Fig. 3 
(slope 0.88; r2 = 0.83), suggesting that the PLS model leads to 
better permeability estimates than normally achieved from 
conventional poro-perm plots. Conventional statistics per-
taining to a fitted linear regression model between predicted 
(y) versus reference (x) values are used to express the degree of 
prediction strength: slope and regression coefficient, r2. For 
both these modelling indices the criterion is to be as close 
to 1.00 as possible. Such validation statistics must be based 
on proper validation (Esbensen & Geladi 2010). The perme-
ability model is primarily carried by positively correlated Por, 
LL, IL, SN and negatively correlated RHOB and GR, but 
several other log and composition variables also have minor, 
but significant influence. From the loading-weights plot it is 
difficult to resolve any fully irrelevant variables; PLS mod-
els benefit from using a full X-variable complement; variable 
selection is not needed in this case. Variable relationships 
are interpreted in the more appropriate PLS loading-weight 
plots; a technical detail not to be elaborated on here, as inter-
pretation follows the same principles (Martens & Næs 1989; 
Esbensen 2010).
 Figure 4 shows permeability prediction only based on log 
data (Ekofisk Formation excluded), simulating a situation in 
which there are only well-site, wire-line logs available for the  

 
fastest possible permeability prediction. The validation re-
sults for this model (slope 0.77; r2 = 0.75) are lower, but still 
acceptable for direct on-site permeability screening based on 
contemporaneous log data alone. The results in Figs 3 and 
4 indicate that the Tor Formation can be modelled equally 
well with, or without, the Hod Formation.
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Fig. 4. PLS-regression model (logs only). A: 
PLS X-space score plot (t1-t2). B: Prediction 
versus reference plot. Proportions of total 
data variance modelled shown along each PLS 
component [X%, y%]. Legend see Fig. 3.

Fig. 5. Reservoir properties versus depth. A: Wire-line density log and 
core porosity measurements. B: Predicted air permeability based on the 
model presented in Fig. 4, compared with reference permeability (core 
measurements). The reservoir is gas filled from 1800 to 1880 m and 
oil filled down to a depth of 2036 m. This model does not apply to the 
Ekofisk Formation (red rectangle).
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 Figure 5 shows stratigraphic permeability results for the 
all-logs prediction model (Fig. 4), plotted together with 
measured core porosity (%) and density. An all-logs predic-
tion model is fully able to characterise the Hod and Tor 
Formations, but not the Ekofisk Formation. For the latter, 
additional core information is necessary (Fig. 3). 

Discussion
The compositional difference between the Ekofisk Forma-
tion and the Tor Formation has also previously been stud-
ied by multivariate data analysis (Kunzendorf & Sørensen 
1989), pointing to a relationship between reservoir quality 
and geochemistry. Røgen & Fabricius (2002) showed that 
these compositional and textural relations are also reflected 
in specific surface area differences between the formations, 
and thus in permeability and porosity differences.
 Our analysis shows that high permeability is closely re-
lated to high porosity, and to high resistivity (Fig. 3; LL, IL, 
SN), whereas low permeability is related to high density and 
high GR, high non-carbonate content and thus to impure 
chalk with high concentrations of Mn, Fe and Mg. Røgen & 
Fabricius (2002) also showed that quantitative mineral data 
can help to explain permeability values better.
 Our analysis also shows that permeability predictions 
from wire-line logs alone strongly depend on the sonic and 
resistivity logs (Fig. 4; DT, IL, LL, SN and SP). These find-
ings complement those of Alam et al. (2011) in which perme-
ability was also predicted but based on the sonic log alone 
(DT). Our analysis further shows that it is possible to model 
permeability more comprehensively by including the full set 
of readily available wire-line logs.

Conclusions
The present study confirms that multiple parameters con-
trol permeability levels. Both log data and core data can be 
used advantageously in direct PLS prediction; there are real 
benefits in including the full set of available well site param-
eters. Prediction of permeability from models based on log 
information alone is useful for screening purposes, where-
as permeability prediction from models based on both log 
data and core data are, not surprisingly, significantly better. 
Which approach to use depends on the context in which per-
meability prediction is used, especially on the time available 
for securing the additional core information from the labora- 
tory; also cuttings or core chips may be used for prediction.

 This study shows that direct well-site permeability predic-
tion is feasible. Improvements can be made by adding stand-
ard He-porosity data and other easily measured conventional 
laboratory core parameters. The feasibility study was based 
on a 192 m long chalk interval in a single well only. The da-
tabase can be extended to include more of the comprehensive 
core data available from the Danish North Sea. Based on an 
augmented data set, it is in principle an easy task to refine 
this pilot study to investigate the more general limits of the 
feasibility demonstrated.
 A parallel study based on a similar approach using log data 
and logs + core data also proved successful for prediction of 
‘functional rock types’ for other lithologies than chalk, i.e. 
Alum Shale (Schovsbo et al. 2015). Functional rock types 
may correlate with rock strength and can be used for optimi-
sation of the completion design.
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