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8. Principles of Proper Validation (PPV)

This chapter builds directly on the previous chapters on 
sampling (chapter 3), PCA (chapter 4) and multivariate 
regression (chapter 7). Validation is presented using 
the example of multivariate calibration/prediction, but 
the general principles apply to all data modelling for 
which a performance is to be assessed, e.g. model fit, 
classification, prediction, time-series forecasting etc.

8.1 Introduction

A set of generic Principles of Proper Validation (PPV) is 
presented, based on five distinctions:
i) The PPV are universal and apply to all situations 

in which validation assessment of performance is 
desired: modelling, prediction, classification, time 
series forecasting.

ii) The key element behind PPV is the Theory of 
Sampling (TOS), which provides insight into all var-
iance-generating factors, especially the “Incorrect 
Sampling Errors” (ISE). If not properly eliminated, 
these are responsible for an inconstant sampling 
bias, for which no correction is possible, contrary to 
the widespread statistical tradition for “bias correc-
tion” (see also chapter 3). A sampling bias wreaks 
havoc with all types of validation—except test set 
validation. The sampling strategy should always 
address how known (and unknown) sources of var-
iation can meaningfully be included in the first data-
set which is to be modelled, the training set. Thus, 
sampling includes qualitative information about 
time, location, batch ID and other qualitative infor-
mation related to the sampling strategy, and not 
only the physical procedure. Such a comprehen-
sive overview is imperative for a reliable estimation 
of future prediction or classification performance.

iii) Validation cannot be understood solely by focus-
ing on the method(s) of validation—it is not enough 
to be acquainted only with a particular valida-
tion scheme, algorithm or implementation as has 
been a longstanding tradition in chemometrics. 

Validation must be based on full knowledge of the 
underlying definitions, objectives, methods, effects 
and consequences of the full sampling–reference 
analysis–data analysis process.

iv) Analysis of the most general validation objectives 
leads to the conclusion that there is one valid para-
digm only: test set validation. In this chapter, the 
most important alternative validation approaches 
are discussed, critiqued and rejected in this 
perspective.

v) Contrary to contemporary chemometric practices 
and validation myths, cross-validation is unjus-
tified in the form of a one-for-all procedure for all 
data sets. Within its own methodological scope, 
cross-validation is shown to be but a suboptimal 
simulation of test set validation, as it is based on 
one data set only (the training data set). However, 
such a “first” singular data set could, occasion-
ally, be representative of future variation, but one 
would never know whether this is the case within 
the one-sample-set context alone; only external 
experience or evidence would be decisive. Many 
re-sampling validation methods suffer from this 
principal deficiency. Thus, while there are cases 
in which cross-validation finds excellent use, for 
example, categorical segment cross-validation (in 
which categories can be batches, seasons, alter-
native models or pre-treatments), see below, such 
cases represent only special circumstances and no 
generalisation regarding validation principles can 
be made hereupon.
This chapter shows how a second data set (test 

set, external validation set) constitutes a minimum crit-
ical success factor for inclusion of the sampling errors 
incurred in all “future” situations in which the validated 
model is to perform. From this follows that all re-sam-
pling validation approaches based on a singular data 
set only (for example a data set sampled on one day 
only, or with one instrument only, or addressing one 
batch of raw materials only) should logically be termi-
nated, or used only with full scientific understanding 
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and disclosure of their detrimental limitations and con-
sequences. This chapter builds on a comprehensive 
analysis of validation in Esbensen and Geladi [1]; see 
also Westad and Marini [2].

In the central case of PLSR, a call is here made for 
stringent commitment to test-set validation based on 
graphical inspection of pertinent t–u plots for optimal 
understanding of the underlying X–Y data structures 
and interrelationships for validation guidance. The t–u 
visualisation, or similar regarding other multivariate 
data modelling methods in need of validation, is crit-
ical in order to stop continuation of decades of “blind” 
use of a one-for-all procedure cross-validation, a state 
of affairs that has led to quite some confusion among 
generations of chemometricians.

8.2 The Principles of Validation: 
overview

Throughout the history of chemometrics discussions 
have often surfaced as to what constitutes proper 
validation. There are few other topics which have led 
to a more marked and heated set of different opin-
ions. Discussions on this basis can be broad-ranging 
and informative, while at other times personal, emo-
tional and counter-effective. The matter at hand is a 
thoroughly scientific one, however. In chemometrics, 
validation is most known in the context of prediction 
validation, of which there are (at least) four types: test-
set validation, cross-validation, “correction validation” 
(leverage correction is the prime example) and re-sam-
pling validation methods (bootstrap, jackknife, Monte 
Carlo simulation, permutation testing). The standard 
cross-validation can be viewed as a single instance of 
the jack-knife re-sampling procedure (Chapter 7, sec-
tion 7.17)—and it can also be viewed as a simulated 
test set validation, albeit a fatally flawed simulation.

This chapter illustrates the central PPV by a phe-
nomenological analysis of prediction validation and its 
objectives in the specific multivariate calibration context.

The PPV are concerned with the question of how 
to establish a general validation approach that does 
not depend upon assumptions of any specific data 
structure(s), nor associated with any specific variant of 
the many validation method alternatives that can be 
found in the literature.

A few salient definitions are needed at the out-
set—strictness and preciseness is a much-needed 
commodity in the validation debate:

proper adj.: adapted or appropriate to the purpose 
or circumstance
valid adj.: sound; just; well-founded; producing the 
desired result
validate v.t.: to make valid; substantiate; confirm

One reason for much of the often deeply felt dif-
ferences-of-opinion regarding what constitutes proper 
validation relates to the fact that it involves both stat-
istical as well as domain-specific issues (e.g. chemi-
cal, physical, data analytical or other error issues). A 
significant proportion of the historical debate simply 
reflects a much too limited point of departure from 
which is typically attempted to draw far too sweeping 
generalisations—for example, the belief that valida-
tion is exclusively a statistical issue. Within this view 
“sampling” is simply a matter of drawing from a popu-
lation of independently and identically distributed (i.i.d.) 
measurements; this understanding is termed statistical 
sampling (samplingSTAT) in what follows.

In the present context, a broader, TOS-based 
holistic understanding of the interconnected sampling, 
analysis and validation issues is advocated, while tak-
ing care not to fall into the opposite, equally simplistic 
position, viz. that all data matrices result from sam-
pling from heterogeneous material. However, most 
of the activities in the field of data analysis and data 
modelling, in fact, do occupy a realm in which one has 
to assume the presence of significant data errors. If 
these errors are neglected, they will cause grave pre-
diction and validation problems. It is, therefore, also 
necessary to use the term samplingTOS. The cases 
in which pure statistical sampling suffices, these can 
simply be treated in an identical fashion alongside the 
much more prevalent sampling-error cases, allowing 
for unity in all validation considerations. The issues 
regarding validation are neither about opinions (per-
sonal, institutional), nor about following one or other 
established schools-of-thought or traditions (thereby 
dodging a personal responsibility for understanding 
and method selection). All validation issues are fully 
tractable and lend themselves to rational discussion 
and sound, objective analysis that ultimately lead to 
impartial conclusions.
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8.3 Data quality—data 
representativity

The PPV need a few initiating discussion points related 
to the concepts of data quality, data representativity 
and sample representativity.

“Data quality” is a broad, but often loosely defined 
term; any definition that does not include the specific 
aspect of representativity is lacking, however. The term 
“data” is often equated with “information”, but it is obvi-
ous that this can only be in a latent, potential form. It 
takes data analysis with appropriate, problem- context 
interpretation to reveal the structural “information” 
residing in data matrices. In chemometrics, the prime 
interest is, of course, on data analysis, while issues 
pertaining to the prehistory of a data table usually 
receive but scant attention. In fact: “Chemometricians 
analyse data…” is an often-heard statement going a 
long way towards rejecting any chemometric respon-
sibility for data quality, and hence also of sample rep-
resentativity. Nothing could be more dangerous, how-
ever. One exception is Martens and Martens [3] which 
addresses “multivariate analysis of quality”, where 
the focus is stated to relate to the “quality of informa-
tion”, which is defined as “...dependent on reliability 
and relevance”. However, reliability and relevance are 
open-ended, general adjectives which, must be given 
a specific unambiguous meaning from the problem 
context at hand. It has, therefore, been argued that 
a far more relevant characteristic is representativity, 
partly because a clear definition is at hand, but mainly 
because the specific derivation of this definition in TOS 
allows for comprehensive account of the underlying 
phenomenon of heterogeneity.

It is mandatory to contemplate the specific origin 
of any data set and in this context, data analysis is 
always dependent upon at least one primary sampling 
stage in order to produce the sample, PAT or sensor 
signal acquisition stage no exception, often including 
mass-reduction and sample preparation in later sam-
pling stages. An analytical stage i.e. (chemical, phys-
ical, measurement etc.) is also required before data 
analysis can commence. It is, therefore, an inescapable 
conclusion that “reliable analytical information” must 
be based on representative samples. In this chapter, a 
critical distinction is made between statistical sampling 
and the kind of physical sampling addressed by TOS. 

In chemometrics, it is necessary to be competent with 
respect to both these kinds of “sampling”.

There will always be large, significant or alterna-
tively only small sampling/signal acquisition errors 
involved—the point being that at the outset this quan-
titative issue is unknown, and therefore cannot be 
dismissed without grave danger. In chemometrics, 
the type of errors colloquially known as “measure-
ment errors” are mostly considered to be related to 
the X-data only, typically conceptualised in the form 
“instrumental measurement errors”, while they logically 
also must refer to analytical errors pertaining to “ref-
erence measurements” (Y-data in calibration). These 
effects are all incorporated into the concept of Global 
Estimation Error (GEE) within the realm of TOS, thus 
allowing a rational discussion of all sampling and anal-
ysis errors and their impacts on data quality. By deal-
ing universally with these issues as if sampling issues 
were always significant, all cases can be treated iden-
tically in a rational and efficient manner, covering all 
combinations of large and/or small statistical errors as 
well as large/small TOS-sampling errors (including the 
rare, pure statistical case alluded to above).

The position most often met throughout the history 
of chemometrics is that of simply assuming all sam-
pling errors are insignificant. This attitude represents a 
fatal illegitimate generalisation for which no proof has 
ever been presented. Chemometric data analysis with-
out sufficient attention to the full context of relevant 
pre-data issues cannot be considered comprehensive, 
but is in fact incomplete, indeed unscientific. It is note-
worthy how the complex validation scenario is all too 
often simply swept under the rug in the quest for a 
one-for-all method that automatically takes care of all 
the troublesome issues. This is called “Chemometrics 
without thinking”.

8.4 Validation objectives

Validation, in the multivariate calibration context, 
means assessing that the prediction performance is 
valid, i.e. to confirm that a particular prediction model 
is fit for purpose. Usually the prediction performance 
is specified as a certain prediction uncertainty (error) 
maximum threshold, or similar. But it is known that the 
prediction accuracy is a characteristic that must relate 
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back all the way to the original lot/material (or popula-
tion in certain cases), which translates to the prediction 
accuracy being a performance characteristic that refers 
to the features of the original lot, represented by the 
reference analytical values, which also require proper 
validation in order to be used to calibrate a model.

This objective does not refer only to the technical 
calibration/modelling and validation process, but first 
and foremost to the circumstances surrounding the 
future performance for new predictions when using the 
model on “similar data”. This means that both the train-
ing and validation data sets must be as similar as pos-
sible to those new data sets pertaining to the “future” 
working situation in which the model is to perform its 
task. The training set and the test set should not be as 
identical to one-another, as is a current misconception.

Thus, already when designing and selecting a train-
ing data set for modelling it is imperative also to pay 
attention to how the model is to be validated. This 
means, that one must always try to be in a position also 
to be able to choose at least an additional, second inde-
pendent data set, to be used only for validation. Such a 
data set is hereafter generically called the test set. This is 
the data set with which to represent the future working 
situation of the particular model. As shall be clear below, 
at times this may demand some work, sometimes a 
lot of work—there may not always be easy fixes here. 
Irrespective, however, all prediction models must be 
validated w.r.t. realistic future circumstances. It is sim-
ply not good enough to secure double as many objects 
(samples, measurements) as what appear sufficient 
for modelling and then slice off 50% (performing the 
so-called “test set split”)*. It will become clear that there 
is much more involved in establishing a realistic, reliable 
validation foundation. This is not to say that the splitting 

* In chemometrics, there has been a key terminology con-
fusion regarding the terms, sample, object, observation, 
measurement a.o. The duality regarding “sample” in the sta-
tistical vs the TOS contexts is covered comprehensively in 
this book. An “observation” can be understood as a passive 
measurement. A physical sample may result in several “rep-
licate” measurements, which then would become individual 
objects when represented in a data matrix. Chapters 3, 8 
and 9 have made a profound effort to clear up these con-
fused terminology issues. 

of a pool of samples into calibration and validation sets 
is always bad, it just requires a relevant, problem spe-
cific approach to the design of the data sets involved; 
above all it requires a complete understanding of all the 
issues treated in this chapter.

In data analysis, statistics and chemometrics, ~20 
years ago, there was a somewhat rude awakening 
to the fact that far too little prediction validation was 
on the agenda at the expense of mere modelling. In 
Höskuldsson’s [4] reassessment of the entire realm 
of “Prediction methods in science and technology”, it 
was described how modelling fit assessment reigned 
pretty much supreme as compared to the neces-
sary, complementary prediction validation, for which 
he introduced the “H-principle” of balanced assess-
ment of both modelling and prediction performance. 
Today, there is a much more widespread awareness 
that modelling fit optimisation is necessary, but there is 
still not a sufficiently well-known criterion for prediction 
performance. Høskuldsson pointed to the Heisenberg 
Uncertainty principle from quantum mechanics when 
naming his H-principle of balanced modelling and vali-
dation complementarity.†

8.4.1 Test set validation—a necessary and 
sufficient paradigm

The central theme of the present approach can be 
stated in quite unambiguous terms: All other validation 
methods are but simulations of test set validation, with 
various flaws.

simulate v.t: to assume or have the appearance of 
characteristics of

The objectives of test set validation are always 
structurally correct and complete. If a proper test set 
was always obtainable (and this is not that difficult, see 
further below), no other validation procedure need ever 
have been introduced; test set validation would then 
be the only validation method in existence.

† Chemometrics owe Høskuldsson a very great depth of 
gratitude for his seminal 1996 treatise; the H-principle name 
may very well connote the last name of this chemometric 
author as well.
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8.4.2 Validation in data analysis and 
chemometrics

Validation can be used for many different purposes; it 
is relevant to speak of internal as well as external vali-
dation scenarios. Below are discussed both legitimate 
and illegitimate approaches to validation focused on 
multivariate calibration for prediction purposes. Thus, 
cross-validation used on one data matrix (X) only, i.e. 
PCA (chapters 4 and 6) and SIMCA (chapter 10) is not 
covered in full, but neither is this necessary for the pur-
poses of this explanation. It is straightforward to apply 
PPV for these cases, as most aspects of the analysis, 
discussion and conclusions from the prediction sce-
nario can be carried over without loss of generality. It 
is the overarching principles of validation which are in 
focus, followed by examples and data analysis assign-
ments which will allow the developing data analyst 
ample opportunity to become familiar with all the intri-
cacies of practical validation.

8.5 Fallacies and abuse of the central 
limit theorem 

Abraham de Moivre’s Central Limit Theorem [5], also 
called normal convergence theorem, states: A collec-
tion of means of reasonably large subsamples taken 
from a large parent population form a population that 
is normally distributed around the mean of the parent 
population, no matter what the distribution of the par-
ent population is.

It is critically important to note that large statisti-
cal subsamples are required and that the mean of the 
parent population is only found in the limit for many 
such statistical subsamples. On many occasions this 
point appears to be gravely misinterpreted or forgot-
ten. Re-sampling on a single data set (e.g. the training 
data set), often of a significantly small size, or even on 
a fractional subset of a training set, can only lead to 
knowledge about this very set alone—and only very 
little, if any, useful knowledge about the parent popula-
tion and much less as to future samples not yet sam-
pled. Much of the popularity of cross-validation may be 
based on a too-swift dependence on the respectability 
accorded to the central limit theorem. See Wonacott 
and Wonacott [6] and Devore [7] or many current 

statistics textbooks for a full description of the central 
limit theorem.

The key issue here is that the singular training set is 
supposed to carry all possible and necessary informa-
tion about the background population, including that it 
is also able to represent any other (new) data set(s) to 
be sampled in the future. In a very real sense the size 
of the training set is only but the first quality criterion for 
getting this statistical inference correctly started; much 
more important is the “coverage” of future data sets as 
compared with that of the training set. Small training 
data sets are often seen re-sampled/subdivided into 
even smaller segments which are supposed to perform 
the role of a “reasonably large subset” in the sense of 
de Moivre above. Clearly a very dangerous practice! It 
is questionable how often this fundamental limitation 
is known, far less respected, when doing a “routine 
cross-validation” on a typical training data set with but 
a relatively small number of objects, often less than, 
say, 50. Add to this the central message of chapter 
3, i.e. significant presence of non-stochastic sam-
pling/signal acquisition errors (TOS-errors). The most 
common argument encountered by typically inexperi-
enced chemometricians is that a too small training set 
is available for test set validation, so… “Just perform 
cross-validation… and all will be well”. Well, not so 
fast….

8.6 Systematics of cross-validation

It is advantageous to treat all cross-validation vari-
ants under a systematic heading, termed segmented 
cross-validation. This allows significant simplifica-
tion in discussing the historically disparate variants: 
Leave-one-object-out (LOO), the plethora of differently 
segmented cross-validation variants, including the 
so-called “test set split” option (a particularly obfus-
cating terminology for an otherwise straight two-seg-
mented cross-validation approach). Indeed, two of 
these names could not have been chosen in a worse 
fashion; “test set split” is a terrible misnomer as no 
test set can ever be created from this procedure—and 
“full cross-validation (LOO)” is actually the worst of all 
possible segmented cross-validations, to be explained 
below. The formal definition of “segmented cross-vali-
dation” is as follows.
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Depending on the fraction of training set samples 
(totalling N) held out for cross-validation, an optional 
range of “s” potential validation segments will be avail-
able for the data analyst, the number of segments 
falling in the interval s = [2, 3, 4,..., (N – 1), N]. Various 
“schools-of-thought” of cross-validation have devel-
oped over history within chemometrics and elsewhere, 
some favouring “full cross-validation” (one object per 
segment, resulting in N segments in total), some defin-
ing 10 segments as the canonical number and others 
favouring similar schemes each with its own preference 
(e.g. 3, 4 or 5 segments), whereas a small, but steadily 
growing minority see more complexity in this issue than 
a more-or-less arbitrary selection from the full range 
of s options. Reflection reveals that there always exist 
(N – 1) potential cross-validation variants for any given 
data set with N samples, but no set of principles for 
objective determination of the optimal number of seg-
ments has ever been offered in the data analysis, che-
mometric or statistical literature.

Below, some hard-won experiences with hundreds 
of (very) diverse data set types and data structures are 
presented that will allow an easy overview of the sys-
tematics of validation.

8.7 Data structure display via t–u 
plots

The canonical formulation of the PLSR-1 algorithm (X 
and Y: mean-centred and scaled as needed) stipulates:

 t1 = Xw1 (8.1) 
 u1 = yq1 (8.2)

where t1 is the first PLS X-score, w1 is the first PLS X 
loading-weight, u1 is the first PLS y-score and q1  is the 
first PLS y-loading.

The PLSR algorithm also calculates higher order 
sets (ta, wa, ua and qa) [a = 2, 3, 4…], after suitable 
deflation allowing the following general appreciation. 
Plotting ua against ta, [a = 1, 2, 3, 4…] reveals the suc-
cession of the so-called “inner relationships”, which 
are direct visual manifestations of the data structure 
present. It is precisely these plots that are used as a 
vehicle for visual assessment of outliers etc. in any 
regression context. The “t–u plots” also constitute a 

useful check of whether a possible next component 
seems meaningful or not, as evidenced by the strength 
of “inner” partial regressions as the dimensional index, 
a, is increased by one. The t–u issues are identical also 
for the PLS2 case, in which ua is no longer a scaled 
(and sequentially deflated) version of Y alone, but a lin-
ear combination of all Q Y-variables.

Although the PLSR algorithm can be written with-
out explicit projections in the Y-space, i.e. without 
equations 8.1 and 8.2, see e.g. Martens and Næs 
[8], Martens and Martens [3], there is a serious loss of 
potential information about the data set in doing so, 
as the purpose of getting visual insight into the empir-
ical data structure is completely lost. It is immensely 
informative to assess the specific data structure by t–u 
plots. In order to be able to take proper action with 
respect to the actual data structure present in train-
ing, test or “future” data sets, a general typology of 
the principal types of data structures associated with 
multivariate calibration is presented in Figure 8.1.

There are three underlying features characterising 
the particular manifestations of any multivariate t–u 
data structure: i) the number of objects involved, N, 
ii) the degree of linear (or non-linear) correlation pres-
ent between X and Y and iii) data clustering, group-
ing (“clumpiness”) and/or significant outliers. The four 
first cases shown in Figure 8.1 constitute a systematic 
series of strong/weak correlation vs small/large N, out-
lining the full spectrum of typical data sets for which 
PLSR modelling is relevant and legitimate.

As an important contrast, three of the four latter 
cases in Figure 8.1 represent deviating covariance data 
structures for which PLSR-modelling should never 
even have been contemplated. It is obvious, that with-
out t–u visualisation, such cases run a very high risk of 
going unnoticed. The validation literature is ripe with 
examples of over-generalised validation discussions 
and conclusions—which, when shown on the simple 
t–u plot simply to be related to such degenerate data 
structures, are in reality nonsensical and which should 
never have been published. Collegial considerations 
disallow specific references.

It cannot be overemphasised how much data 
structure information can be gained from diligent 
inspection of components cross plots. Many such 
plots are used throughout this book, complete with 
interpretations of the meaning of the data structures 
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revealed. This is perhaps one of the strongest attri-
butes of PLSR. Contrary to the case for PCA, in which 
there only exist t–t plots, in PLSR (as in PCR), the t–u 
cross-plots displays highly relevant insight into the 
X–Y inter-space data structures. While t–t plots can 
always also be called up for PLSR model inspection, 
these are normally only consulted depending upon 
specific purposes behind the regression modelling 
in which the X-space data relationships are of inter-
est in themselves, For the so-called “PLS-constrained 
X-space modelling” the objective is often specifically to 
observe the X-space projections, and here inspection 
and interpretation of t–t plots will play a central role, 
while for ordinary feed forward XY regression model 
building, t–u plots are the relevant information carriers.

A key issue of the highest value for data analysis 
beginners is the following: PCA-like t–t plots is not 
the proper, and very far from the most efficient, place 
to look for outliers when building a regression model 
(PLSR, PCR). Identification of outliers influencing PLSR 
modelling can most meaningfully, and shall here in fact 
only, be pursued on the series of relevant t–u plots. 
This is an insight that will spare novice data analysts a 
lot of grief and which will cut short an otherwise long 
learning phase.

With the help of t–u plots, it is easy to appreciate 
that an empirical close match between cross-valida-
tion and test set validation results (evidenced by “sim-
ilar” Aopt and RMSEP) which is simply a manifestation 
of a particularly strong correlation between the X- and 
Y-spaces, e.g. cases a) and c) in Figure 8.1. But this 
holds exactly only for strongly correlated t–u data 
structures from which it follows that no generalisation 
is allowable to other data structures. This is an exam-
ple of an illegitimate generalisation, because it is based 
on a particular data set structure only. The chemom-
etrics literature is ripe with examples of such invalid 
transgressions within the realm of validation.

t–u plots must be inspected for every regression 
model to be validated as it will elucidate the under-
lying relationship between X and Y (sample groups, 
non-linearities) and also to indicate the correct model 
dimensionality.

There are several traditions within chemometrics 
that do not adhere to this flexible understanding, how-
ever, which instead prescribe “blind” adherence to one 
particular version of cross-validation with no graphic 

inspection, i.e. which rely on “blind” cross-validation 
with a fixed number of segments for all data sets 
(aptly called straightjacket cross-validation). But even 
a cursory overview of the principal correlation rela-
tionships delineated in Figure 8.1 leads to the insight 
that a fixed number of segments will work in markedly 
different ways depending on the specific data struc-
ture encountered. This goes a long way to explain why 
repeated cross-validation, identical but for alternative 
starting segment definitions, can lead to significantly 
different validation results. A fixed number of segments 
can never be said to pay the necessary tribute to the 
many different data structures met with in the realm of 
science, technology and industry. One, rigid scheme 
most emphatically does not fit all. There is ample justi-
fied reservation as to the plethora of claims in the litera-
ture, all hailing the so-called “robustness” of cross-val-
idation. These claims are simply wrong.

By way of contrast, based on Figure 8.1, all types 
of varying validation results are completely compre-
hensible—a simple mental picture of selecting a frac-
tion of the N objects displayed in a t–u plot (which is 
tantamount to selecting a segment in cross-validation) 
allows the data analyst to picture the resulting effect of 
sub-modelling of the remaining objects (perhaps first 
after a little experience, but that is exactly the reason 
for working through a chemometric textbook…).

Upon reflection, these relationships are but the 
reverse issue of the often claimed optimistic, but not 
fully thought through, cross-validation credo: validation 
is on safe ground as long as/if several variants of valida-
tion, including several different segmented cross-val-
idations result in similar validation results (identical 
number of components, “similar” RMSECV). All is 
indeed well if-and-when this hopeful situation occurs—
however, the only thing that has been demonstrated 
is a case of a strongly correlated X–Y relationship, as 
depicted in Figures 8.1a, c, f or h. In reality nothing 
has been revealed as to the future prediction poten-
tial, unless it has been independently proven beyond 
reasonable doubt, that this strong X–Y correlation 
remains the defining feature also of all possible “future” 
data sets on which the regression model is to perform. 
Such a relationship cannot ever be taken on blind faith, 
however, but should be substantiated based on theory 
and background knowledge about the actual applica-
tion. This would correspond to believing that all training 
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Figure 8.1: Eight correlation data structures as depicted in PLSR t–u plots. There are three features that 
determine the appearance of a t–u data structure: i) the number of objects, N, ii) the degree of linear (or non-
linear) correlation present and iii) data clustering or grouping (“clumpiness”). An attempt has been made to 
cover as well as possible all principal data structure types met with in practical data analysis. Cases e) and h) 
should never have been subjected to regression modelling in the first place; case g) can not be modelled with 
a one-component model unless a satisfactory liearising transformation has been employed—case g) can be 
modelled straightforwardly, however, with an excess of components.
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data sets are always and at all places… a 100% valid 
and reliable representation of the potential myriad of 
all future data sets sampledstat (from a population), or 
sampledTOS from a heterogeneous target. If this were 
indeed so, there would be no need for validation: the 
training set modelling fit would be all that was ever 
needed, as it would be universal—alas, reality checks 
in here with a very different lesson, see chapter 3; this 
is a hopelessly naïve belief.

Demonstration of whether such a situation only 
holds locally, i.e. for one specific data set, or not, is 
precisely the reason behind, the objective of, including 
the second data set (test set) in the validation, while 
all re-sampling approaches only deal with the singular 
Xtrain set exclusively.‡

Still more insight can be gained from careful 
inspection of Figure 8.1. For all data sets of the type 
like cases a–d) one observes a systematic regularity 

‡ One test set is the minimum requirement… but more can, 
of course, also be contemplated in specific situations, espe-
cially in cases where data set structures are varying more 
than what is comfortable. This issue is particularly relevant 
for PAT implementations and other process data modelling 
realms, see chapter 13.

w.r.t. alternative segmented cross-validations with a 
varying number of segments [s = 2, 3, 4, … N]. Figure 
8.2 depicts the systematics of “RMSECV vs # PLSR-
components” plots, corresponding to the progression 
of all (N – 1) potential segmented cross-validations for a 
particular data set.

There will always be a lowest RMSECV when the 
number of segments is at its maximum, N (corre-
sponding to leave one out cross-validation, LOOCV). 
Conversely, when s = 2, RMSECV will be at its maxi-
mum. These relationships hold for all reasonably regu-
lar correlation data structures when cross-validation is 
performed on one-and-the-same data set. Exceptions 
may occur, these relationships may be slightly less reg-
ular, but then only due to some influential data structure 
irregularity (“clumpiness” or presence of adverse outli-
ers, especially “transverse” outliers), which will tend to 
blur the general pattern slightly. But the point is, again, 
there is never any generalisation potential beyond the 
particular local data structure.

For the same data set, a reduction of the num-
ber of segments will, in general, result in an increase in 
the RMSECV error estimate, and vice versa, but there 
is no reason for confusion: different validation setups 
will result in different validation outcomes; the number 
of components may change in more influential cases, 

Figure 8.2: Schematic behaviour of RMSECV-estimation (prediction Y-error variance) based on the full range of 
cross-validation segments available to all particular data sets with N objects s = [2, 3, 4, ... N ].
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and the numerical estimate of RMSECV will always 
change. Faulty conclusions may easily result if, for 
such a particular data set, the data analyst succumbs 
to the temptation to select the cross-validation setup 
that corresponds to the lowest RMSECV. This may at 
first appear as a legitimate cross-validation outcome, 
but it is only based on a subjective desire to select an 
“optimal model”. Such a voluntary approach is unten-
able, indeed unscientific, biased and subjective, to 
say the least. In this book, the reader will be assigned 
the task personally to investigate and substantiate to 
which degree the general behaviour depicted in Figure 
8.2 holds for the example data sets supplied. Figure 
8.2 is based on jointly accumulated 50+ years of val-
idation experience between the contributing authors 
(which constitute only a minute fraction of the very 
many practicing chemometricians who have had the 
same experiences).

Careful inspection of the pertinent t–u plot of any 
multivariate calibration model is thus the only way to 
fully understand and interpret results stemming from 
otherwise “blind” cross-validations. This is possibly a 
reason why some data analysis and chemometric tra-
ditions tend to avoid inspection of t–u plots; these may 
reveal an inconvenient truth in the form of a complex 
(as opposed to an assumed simple) X–Y data struc-
ture in regression modelling. Such potential information 
does not reach the data analyst if systematic inspec-
tion of t–u plots is not one of the first items on the 
model building agenda.

8.8 Multiple validation approaches

When using segmented cross-validation several times 
over with different seed sub-datasets, or when using 
a multitude of different validation approaches, there is 
often a tacit assumption that the majority of approaches 
will lead to practically the same optimal number of 
components also yielding very similar RMSECV results. 
When this happens, it is claimed that a successful val-
idation has resulted, and that the model is “robust”.§ 
Alas, from Figures 8.1 and 8.2, and the discussion 

§ Note that in reality the model is only “robust” with respect 
to alternative validation methods or strategies. 

above, it follows that this is a groundless claim and all 
that has been proven is that one particular data struc-
ture (the local data set) is characterised by a strong (X, 
Y) correlation. In this situation, nothing regarding the 
general future prediction performance nor the universal 
application of a variant of re-sampling approaches was 
in fact proven in any valid sense.

It must be noted, however, that particular scenar-
ios may at times be so strictly bracketed that all future 
data sets will indeed behave more-or-less as typolog-
ical clones—laboratory calibration of solutions abiding 
Beer’s law could serve as a good example along with 
many others, however, generalisation to all systems 
is still not warranted. The occurrence of such cases 
may, or may not be met with over the entire career of 
any data analyst, however, it is always easy to find out 
the objective situation. Instead of being but a follower 
of assumptions—always inspect and interpret the rel-
evant t–u plots and always perform test set validation 
where and whenever possible.

8.9 Verdict on training set splitting 
and many other myths

“Why is duplicated application of an identical sampling 
protocol in order to produce two distinct data sets, 
Xtrain and Xtest different from splitting a twice-as-large 
Xtrain sampled in one operation?”

This is undoubtedly the most often heard remark 
in discussions on validation. Below it is argued force-
fully why this is indeed so. What follows is a concep-
tual analysis—and a refutation of the many objections 
to test validation often raised as passive justification 
for continuing to apply cross-validation. The following 
comprehensive analysis has never before been given at 
this early stage of the education of new data analysts.

Taking care of the number of measurements 
(samples, objects), N, is the easiest obligation of the 
experimentalist/sampler/analyst/data analyst. But it 
is far more important to be in control of the variance- 
influencing factors when trying to secure a sufficiently 
representative ensemble of these N objects to serve 
as the all-important training data set. In the literature, 
and from chemometrics courses, there are usually few 
useful guidelines in this game—except the universal 
stipulation that the training set must span the range 
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of X and Y-values in a “sufficient” fashion, which is a 
problem-dependent issue; often this is the only con-
sideration given to the issue of training data set “repre-
sentativity”. This is a much too shallow understanding, 
however.

The critical issue is, again, heterogeneity and here-
with the obligation to be in full command regarding 
identification and elimination of the sampling errors, 
lest a sampling bias may dominate the measure-
ment uncertainty budget. On this basis, any t–u plot 
must be seen as a fair reflection of the sum-total of 
all influencing factors on the measurement uncertainty. 
Sampling using a well-reflected, problem-dependent 
protocol should ensure that all circumstantial condi-
tions are influencing the sampling process in a com-
parable manner regarding both Xtrain and Xnew, i.e. they 
are given the same opportunity to play out their role 
irrespective of who is doing the sampling, the sample 
preparation and analysis. This is the role of an objective 
sampling-and-analysis protocol. It is important that the 
protocol has both systematic requirements securing 
an effective span, as well as a modicum of random 
selection requirements, deliberately trying to repre-
sent possible unknown circumstantial effects and their 
impact on the correlation of the X–Y data structure.

Circumstantial conditions are capricious; however, 
they are time-varying and in general defy systemati-
sation. But any second sampling from a bulk lot will 
better reflect the situation at the time, or at the place 
in the future scenario, pertaining to the application of 
the prediction model. This may, or may not, be charac-
terised by the same set of conditions as governing the 
training set generation. The key issue is that the sam-
pler has no control over which, and to which degree, 
these conditions may have changed between the time 
of sampling the training data set, Xtrain and the “future 
data set”. The demand of a “second sampling at a 
future time/place” is prescribed so as to deliver a best 
possible glimpse of the future application situation. All 
the data analyst can rely on in this quest is to let the 
second data set capture the data structure pertain-
ing to the test set as objectively as possible. And yes, 
when all of these intricacies are fully understood and 
acknowledged—two independent test sets would be 
(even) better. But there are limits to what one can do!

By focusing on test set validation, to the degree 
conditions have indeed changed, there is now a 

trustworthy representation hereof involved in the vali-
dation, as illustrated in Figures 8.3 and 8.4.

In “some cases” it has been argued that the differ-
ence between the training and the test data set is not 
of sufficient magnitude to be of practical influence. The 
winning argument is that it is not possible to identify 
such cases a priori. Whatever the situation is at the 
time of decision of which validation to go for, the status 
of this issue is manifestly unknown, and in fact any of 
the scenarios shown in Figures 8.4 and 8.5 can poten-
tially be on the agenda. To the degree that the two data 
sets depicted are bona fide training and test sets it is 
vital to include them both in the pertinent validation, 
which can only be performed using test set validation. 
The reasons such more and more marked disparities 
between training and test set can arise is, of course…. 

Figure 8.3: Synoptic display of Xtrain and Xtest as 
a basis for evaluation of empirical data structure 
differences and their t–u expressions pertaining to 
two independent sampling events. The two data 
set models shown here display significantly different 
loading covariances (t,u) and the one data set (grey) 
displays a distinctly smaller variance in the X-space 
than the other. If the grey data set is the test data set, 
it is obvious that there is no similarity with the training 
data set (black), see also Figures 8.4 and 8.5.



232 Multivariate Data Analysis—An Introduction

heterogeneity. How would one be able to ascertain if 
such is the case without going through the reasonable 
effort of (always) taking a second, independent test 
set?

This is a fundamentally unacceptable uncer-
tainty, which is not resolvable within the one-data-
set-only paradigm, again highlighting the dangers of 
an “auto-pilot” cross-validation approach depicted in 
the “one-click-model-development” options in less 
well-reflected offerings.

In fact, the only way this dilemma could ever be 
circumvented would be by carrying out both a test 
set validation as well as a particular cross-validation 
alternative. The cross-validation process in this case is 
used to assess the internal stability of the model (using 
stability plots) and the test set validation is used as an 
assessment of the future reliability of the model. If and 
when this approach is taken, the structurally inferior 
cross-validation would never be accepted as a per-
formance indicator for a final model, one would only 
rely on the superior test set validation result. Still, for 
the reader’s educational benefit, in this book there are 
plenty of data analysis assignments where it is required 
to carry out and compare both test set and the several 
principal variants of segmented cross-validation in an 

attempt to build up experience for both new and expe-
rienced chemometricians.

The logical conclusion to the everlasting “cross-val-
idation”¶ dilemma is to declare a test set validation 
imperative. Nothing adverse will ever result from 
always applying test set validation, which delivers esti-
mates of both Aopt as well as RMSEP, while everything is 
uncontrollably risky by basing a re-sampling cross-vali-
dation on the principally untestable assumption of rep-
resentativity in the form of a timeless, constant data 
structure. Also, a random splitting of the objects in the 
first data set into a calibration and test set does not 
mean one is “home safe”—since the “second opinion” 
of the underlying data structure is missing. Calibration 
and validation is a systematic approach in which much 
understanding of the sampling background and the 
span of the X- and Y-space is required [5].

¶ In a recent meeting of the Australian Near Infrared 
Spectroscopy Group (ANISG), the respected chemome-
trician Professor Tom Fearn presented a paper entitled: 
“Crass-Validation”—a term that well aligns with the current 
argumentation in this textbook.

Figure 8.4: Illustration of a training set and test sets of progressively less-and-less overlap.
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As a pertinent example, the development of a spec-
troscopic analysis of pharmaceutical tablets is briefly 
presented below. When developing such a method, 
many batches of previously made tablets within their 
expiry dates are usually available for the sample pool. 
A protocol is defined that states how many random 
samples are to be taken from each lot, thus, a pool of 
manufactured lots is available covering the expected 
range of raw material and manufacturing conditions at 
the time of calibration development. This is the best 
estimate of the future conditions available and is sup-
plemented with batches made at the time of method 
development.

Due to the tight specifications imparted on the 
production of pharmaceutical tablets, the variability 
of the Y-responses will typically be very low, thus the 
samples obtained should only represent the centre of 
the calibration line. In order to develop a linear model, 

the Y-response range must be expanded, typically 
through the manufacture of development samples that 
span 75–125% of the target Y-response, defined by 
the manufacturing set of samples.

To develop this extended range set, design of 
experiments (DoE) is employed to develop tablet for-
mulations that vary the Y-response, but also change 
the other components in a designed way, so as not 
to lead to unrealistic “binary” mixtures of the constit-
uent of interest and the rest of the tablet matrix. To 
test that the extended set and the manufacturing set 
of data are from similar populations, a set of replicated 
“manufacturing condition” tablets are also developed 
and the spectra are compared using methods such as 
PCA to assess if they are spectrally identical. If this is 
the case, the extended set can be combined with the 
manufacturing set to produce a representative sample 
pool for the development of a calibration model with 

Figure 8.5: 3-D geometry renditions of progressively less-and-less similar covariance data structures. To the 
degree that these are bona fide training—and test sets—it is vital to allow them both to influence the outcome 
of validation, which can only be performed using test set validation.
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appropriately chosen validation set. To choose the val-
idation set, the pooled objects are typically sorted in 
ascending order based on the Y-response. A system-
atic split of the data into a defined number of calibration 
and validation objects can now be made that best cov-
ers the Y-span. The selected objects are then tested 
for X-span and some row exchange is employed such 
that:
1) The calibration sample set spans the greatest vari-

ability of both X- and Y-space simultaneously.
2) The validation sample set completely lies within the 

calibration span, but covers the second greatest 
span. This defines the working range of the model 
to be developed.

3) Both the calibration and validation sets cover the 
widest variations in raw material composition, man-
ufacturing dates and operating conditions as best 
as possible.
This validation set can be labelled the first inter-

nal validation set, as it is primarily used to assess the 
choice of preprocessing(s) applied and also to test the 
linearity of the calibration model. This internal validation 
set is the most representative set available at the time 
of model development.

Once internal validation has been performed and is 
complete, the model is assessed by its application to 
an external validation set. This set is typically made up 
of samples collected from new batches made after the 
development of the calibration model. It usually only 
assesses the centre of the model, as the production 
samples will only have a tight range of Y-response val-
ues, however, this is the overall objective of the model 
development, to assess the production of tablets for 
consistent manufacture at the target response value.

It is hopefully clear now that calibration develop-
ment is not a simple random process in which sam-
ples to be selected for the validation sets are randomly 
selected from a manufacturing pool. This situation is 
highly applicable to the realms of industries that can 
design samples for making the calibration range larger, 
but what happens in the situation where this luxury 
does not exist, i.e. natural/agricultural systems?

In this case, the calibration development analyst 
is at the mercy of what nature delivers. This does not 
necessarily have to be a bad situation, however, most 
models developed on natural systems usually take 
many seasons of sample collection to become robust. 

There are ways of “smart” calibration development that 
can be employed for this situation. The process of nat-
ural system calibration development is actually quite 
similar to the pharmaceutical development described 
above, once a sample pool has been established.

The steps for successful natural system calibration 
are summarised as follows:
1) Collect representative composite samples from the 

expected strata (for example, geographical regions) 
that the calibration model is to be developed for.

2) Analyse all the collected samples using the X 
method (spectroscopic or other) and perform a 
PCA on the data to look for trends or groupings.

3) Perform a limited number of reference analyses (Y) 
on extreme objects found in the PCA (after removal 
of gross outliers, should such exist).

4) Develop an initial model. At this stage, due to the 
small number of calibration objects available, one 
might use cross-validation to establish a first “indi-
cator” model complexity (only). If reasonable linear-
ity can be established in a small number of compo-
nents/factors, use this model on all new samples 
obtained to look for “holes” in the calibration line.

5) If a linear model cannot be obtained, then use the 
PCA model on all new samples to isolate objects that 
are different from what has been collected to date 
and submit those for reference analysis until a pool 
of samples is available to build extended calibration 
and test sets for “robust” model development.
It is stated categorically here that such protocols 

are the only way of developing reliable models. One of 
the current authors has used this protocol many times 
in industry and has developed models that are still in 
use today after being developed 10–15 years ago. Test 
set selection is systematic and requires great planning 
by the diligent analyst to develop robust calibrations. 
Cross-validation in these method developments is only 
used for the following reasons:
1) To establish initial models when not enough sam-

ples are available for test set validation. These mod-
els are only used to aid in the finding of more sam-
ples that can be used to build the sample pool.

2) To test the internal consistency of the calibration 
model. In particular:
a) Random cross-validation is used to assess the 

stability of the model when random segments 
are taken out.
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b) Systematic cross-validation is used to assess 
the quality of sample replicates.

c) Categorical cross-validation is used to assess 
the model stability under predefined conditions 
like growing seasons, manufacturing shifts, raw 
materials and other non-controllable factors.

In the “machine learning” community for example, 
random splitting has become a firm tradition, indeed 
repeated splits into calibration and test-sets and tun-
ing model parameters to find the “best” model is often 
used here. It should be clear that this is a dangerous 
tradition based on the universal belief that any-and-all 
first data set is always representative of the future pre-
diction situation. Such a fixed belief is totally unjustified 
by reality, however, as outlined in the calibration model 
development protocol described above.

It is often claimed that cross-validation is to be 
used to determine the “correct” number of factors, i.e. 
cross-validation is often accepted for internal validation 
purposes—but (interestingly) that for the most reliable 
estimation of RMSEP a “completely independent” set 
is also pointed to by the very same cross-validation 
proponents. The present treatment has no quarrels 
with the latter stipulation of course—but is in total dis-
agreement regarding any use of cross-validation for 
determination of Aopt. Such internal use of cross-val-
idation is the worst application imaginable, as it can 
only bring forth information as to the singular training 
set. It is never in anybody’s interest to invoke a two-
step, dual method validation approach. By using test 
set validation, one is presented the most reliable esti-
mate of RMSEP (never structurally underestimated) 
based on the objectively correct number of compo-
nents, all in one go.

This is the principal reason for not routinely split-
ting a training data set randomly, however large it may 
be. With random splitting, there is still no information 
pertaining to the future application situation, unless 
complete consideration to the design of the set can 
be given the attention it requires. A massive redun-
dancy in the number of data available is mistaken for 
a realistic basis for future performance validation. Test 
set validation is the best possible way to remedy this 
predicament—by securing (at least) one new data set 
from as far in the “future” as is logistically possible, i.e. 
the external validation set.

By accepting that circumstantial conditions may 
well change (on occasion), but that information about 
this will usually be unknown, the test set validation 
approach is the best one can ever do. This also brings 
up the question to what extent an empirical model can 
be extrapolated, i.e. to a situation in which test-set 
samples as well as other future samples may be found 
to lie outside the full calibration space (if this was, 
somehow, under-represented). It is in order to guard 
against such undesirable situations that the demands 
for a proper training data set are so stringent.

From this discussion, it also transpires that a reg-
imen of regular test set validation model checking is 
a wise approach within the arena of quality monitor-
ing and quality control. The above discussion appears 
particularly easy to understand in the process technol-
ogy, process monitoring and process control settings. 
Proper process sampling in this context is treated spe-
cifically by Esbensen and Paasch-Mortensen [9] and 
will be taken up in the chapter on PAT (chapter 13). In 
particular, the US FDA in its 2011 process validation 
guidance [10] has stated that every batch is now a val-
idation batch in the realms of quality by design (QbD) 
and this requires continuous verification strategies. In 
other words, the use of process analytical technology 
and modern control/data management systems now 
allows manufacturers to test set validate every batch 
produced. This is where responsible chemometrics 
meets proper consumer protection.

8.10 Cross-validation does have 
a role—category and model 
comparisons

There is a role for cross-validation, however, several in 
fact—but they are all strictly compartmentalised and 
cannot be subjected to generalisation.

In the arena of model comparison (both regarding 
models of structurally identical nature, but of option-
ally alternative parameter settings: for example, dif-
ferent pre-processing alternatives, different X-variable 
selection alternatives… as well as more distinctly 
different models), cross-validation is in fact a partic-
ularly relevant approach. For this specific purpose, 
cross-validation furnishes precisely what is needed, 
a general identical performance framework within 
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which the effects from alternative models, parame-
ter settings, preprocessing, categories (seasons, for 
example) can be objectively compared without hav-
ing to deal with data set structure variations for each 
“segment”. In this context, it is a necessity to use the 
same number of segments for all sub-validations, in 
which case it is strongly recommended to use a low 
number of segments, preferentially two, in order to 
impart the greatest possible semblance of realistic 
data set variability to influence the validation results—
and never LOO cross-validation (full cross-validation). 
In this area of applied validation, there is very good 
reason to use cross-validation, although it is interest-
ing to contemplate how one is to deal with the pos-
sibility of a different number of components Aopt for 
alternatively optimised models?

In the exemple of a prediction model encompass-
ing distinctly different seasons, it is intuitively clear 
that in order for such a model to have truly predictive 
power, the only relevant category with which to seg-
ment the training data set, will use seasons as the 
cross-validation segments. A “robust” model, i.e. a 
prediction model able to predict all year round, should 
be stable with respect to seasonal perturbation. A 
standard “blind” cross-validation segmentation will 
invariably have representative objects from all sea-
sons in the different segments, with the result that the 
model is not tested at all with respect to the individual 
seasons.

There exist several other categories that function 
similarly as seasons for many data sets, for which 
the exact same argument holds, as is laid out in full 
in Westad and Marini [2] in which it is shown how 
correctly applied cross-validation gives valuable 
information about these specific types of sources of 
variation. Thus, validating across relevant categorical 
object designations enables the analyst, for exam-
ple, to evaluate the robustness across raw material 
suppliers, location, time, operators etc. These are 
meaningful segment definitions that qualify use of 
cross-validation.

Returning to the pharmaceutical tablet example 
given above, assume that the objective of a project is 
to develop a model for predicting the active ingredient 
in every tablet produced at multiple production loca-
tions. For this purpose, a spectrometer is used on-line 
to provide the necessary information in real time and 

it may be assumed that there exists an established 
reference analytical method. The experimenter then 
needs an estimate of the sources of variation for such 
a system to be implemented at the different produc-
tion sites. Among the many considerations one needs 
to take, the final set of objects may be stratified into 
segments according to, for example: 
a) replicated measurements on one side of one tablet
b) acquiring a spectrum on both sides of the tablet
c) changes over time for one production batch
d) changes between various batches of raw materials
e) changes due to equipment characteristics in the 

production line at one site
f) variation across production sites
g) variation due to the standard sampling and analyt-

ical procedures (covered in chapter 9)
By carefully setting up schemes for cross-valida-

tion according to this type of qualitative information 
about object groups, termed “conceptual cross-val-
idation”, the influence on the prediction results from 
these various sources of variation can be estimated 
and compared. If, for example a) above is the main 
source of variation, there is a fundamental problem 
with the measurement process. On the other hand, 
if cross-validation across instruments reveals large 
differences in the hardware components, the con-
clusion is that individual models for each instrument 
are needed, or some relevant method for instrument 
standardisation or model transfer is required.

Sometimes it is argued that since all the objects 
were acquired on a specific day with a specific 
instrument, on a specific batch of raw materials and 
by one person only, the above intricacies do not 
apply, and one can simply just get on with simple 
“blind” cross-validation. In such a case, however, 
estimates of the model performance will severely 
lack credibility because no prospective conclusions 
can be made, as per the many arguments above 
before section 8.10. Unfortunately, this situation is 
the typical basis for the validation presented in quite 
a number of technical reports, scientific publications 
and in oral presentations, which unavoidably must 
lead to overoptimistic validation assessments, find-
ings that later cannot be reproduced. The history of 
chemometrics has very many such examples which 
has contributed to a certain measure of institutional 
confusion.
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8.11 Cross-validation vs test set 
validation in practice

Usually there is more focus on strict adherence to one 
or another cross-validation procedure, complete with 
preferred number of segments (a fixed scheme), than 
openness with respect to what exactly are the assump-
tions and prerequisites behind cross-validation. This is 
troublesome, as no amount of discussion pro et con a 
specific number of segments will ever reveal the under-
lying structural problems associated with cross-valida-
tion using whatever number of segments “s”. The gen-
eral verdict, following from all of the above, is:

Cross-validation is, in general, not a validation 
which incorporates information as to the future use 
of the particular data model. Cross-validation is over-
whelmingly an internal sub-setting stability assessment 
procedure; cross-validation here only speaks about 
the robustness of a particular (local) data model, as 
gauged by internal sub-setting of the particular train-
ing set.

Caveat: The latter feature can be turned to good 
use in specific cases, specifically, the case of “concep-
tual cross-validation”, which often occurs in the pro-
cess realm, as well as when comparing models. Cross-
validation finds valid use for estimating the magnitude 
of resulting variabilities, provided all future samples lie 
inside the same conceptual modelling domain.**

The operative aspects of cross-validation versus 
test set validation are illustrated forcefully by the mul-
tivariate image analysis (MIA) examples in Esbensen 
and Lied [11]. Even though this publication is address-
ing MIA, the image analytical examples here throw 
unprecedented illumination on the general principles of 

** However, there is a paradox when one set of objects is col-
lected on one day, with one raw material etc., there is still no 
information about the samples as basis for systematic valida-
tion in the sense of “conceptual cross-validation”. In this case 
only random cross-validation or setting aside one part of the 
objects as a test-set are real alternatives. A random split into 
a calibration and a test set will not reveal if the model is sta-
ble towards future sources of variation. Again, only a well 
thought out training data set will allow validation to address 
all the relevant issues; the specific cross-validation method 
alone will be insufficient.

cross-validation because of the extraordinary magni-
tude of the X and Y matrices involved. Because each 
pixel counts as an object, even a modest image illus-
trates truly huge data sets, i.e. 10,000 to 1,000,000 
objects or more. Here the workings of cross-validation 
are visualised like nowhere else in chemometrics.

8.12 Visualisation of validation is 
everything

With the help of the relationships presented in Figure 
8.2 above, further developed below as Figure 8.6, it 
is possible to delineate the universal deficiency dis-
played by segmented cross-validation, indeed also 
compared with leverage-corrected validation: Test set 
validation will always result in the highest estimate for 
RMSEP than any of the segmented cross-validation 
alternatives (and often very much higher than the lev-
erage-corrected RMSE estimate) precisely because 
it incorporates all sampling, conceptual categories, 
model and analyses uncertainties. This will, therefore, 
always constitute the most realistic estimate. The point 
is not to search for the lowest RMSE outcome between 
a voluntary set of alternative validation methods/vari-
ants—the point is to estimate the most realistic future 
prediction error, and this is universally delivered by the 
test set estimate.

Figure 8.6 summarises experience with validation of 
many hundreds of projects and data sets. In the last two 
to three decades of chemometric experiences (teach-
ing, professional, consulting) behind the present book, 
innumerable data analyses have dealt with all manner of 
types of data structure the general patterns of which are 
depicted in Figure 8.1, especially those of more regular 
appearance, types a–d). Occasionally partly deviating 
curves to the ones depicted may appear, but invariably 
related to a local, more irregular data structure. The 
“gap” between the test set validation and two-segment 
cross-validation curves represents the missing TSE-
component, which can only be quantified by compar-
ing test set and the cross-validation results. This rep-
resents the missing TOS-error components that can 
only be incorporated by sampling a second data set, the 
essential feature of which is that the sampling protocol 
is identical for both the training and the test data sets. 
From these universal relationships emerges one very 
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powerful conclusion: only test set validation can stand 
up to the logical and scientific demands of all the char-
acteristics of proper validation. One should henceforth 
observe a test set validation mandate if and whenever 
possible based on the arguments provided in this chap-
ter. Cross-validation used as a model validation tech-
nique when it is possible to perform a test set validation 
is unacceptable in every way and is a main cause of 
why chemometrics has been given a bad name in some 
situations. In one case, one of the authors witnessed 
a situation where a so-called “data analyst” performed 
cross-validation on a full set of 6000 samples. The mind 
boggles at such incompetence!

There has been a persistent chemometric tradition 
of validating all data sets, large or small—regular or 
chaotic w.r.t. data structure, which are often unknown 
unless visualised by t–u plots. This is especially dan-
gerous when dealing with small data sets, see e.g. 
Martens and Dardenne [12]. In such situations where 
the number of objects is limited, setting aside a certain 

proportion of the objects as a test-set comes with 
the very likely cost of removing significant parts of the 
overall latent structure of the data.

Thus, there exist situations (so-called “small 
 sampleSTAT cases”) in which absolutely all objects are 
needed for optimal modelling and interpretation of the 
data structure, such as the relationships between the 
variables etc. In such cases, it is definitely better to 
allow for the possibility of not validating data sets when 
the conditions for proper validation are lacking. “To 
validate, or not to validate” is thus an evergreen valid 
question for the consummate chemometrician.

8.13 Final remark on several test sets

Arguments can easily be raised for invoking a postu-
lated need for several test sets: of course, more than 
one test set will always allow for more valid assess-
ment, since more test set realisations correspond to 

Figure 8.6: Relationships between the three principal RMSE-estimate procedures as a function of model 
complexity. Leverage-corrected estimates are universally lower than those pertaining to cross-validation, which 
are always structurally lower than those stemming from test set validation proper. For one-and-the-same 
training data set [X, Y], the systematic relationships between the different segment variants of cross-validation 
are indicated in principle; these were laid out in detail in Figure.8.2. Stronger (X, Y) correlation will result in more 
close-lying curves, but the principal relationships shown remain the same.
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more examples of the future in-work prediction sce-
nario for the prediction model. One properly material-
ised test set will have a decent chance of incorporating 
the principal information from the future situation. This 
in contrast to the vociferous objections and postulated 
budget or effort constraints that are often claimed, not 
even allowing for a single test set. In a rational context, 
it is evident that a decision regarding the real need for 
several test sets will be based much more on prob-
lem-dependent specifics, always related to the com-
plete problem-dependent background regarding the 
likely consequences, and the price to pay, for sloppy 
validation. Thus, it is here advocated always to plan for 
and materialise one test set, acknowledging the occa-
sional need for more, but this decision is left well and 
safely in the hand of the informed data analysts who 
are closer to the relevant data and their background 
in all cases.

8.14 Conclusions

Re-sampling and cross-validation approaches work 
on one data set only, Xtrain. The tradition of cross-val-
idation is particularly strong in the realm of less 
experienced chemometricians. The current use of 
cross-validation and its huge popularity is based on 
tacit, unsubstantiated assumptions of the training set 
always being fully representative of the future sce-
nario and future measurements on new samples. 
However, this belief finds itself in strong disregard of 
the extremely varying origin and the very diverse data 
structures in the real world. This widespread assump-
tion was shown to be untenable in the light of the 
significant bias-generating sampling errors described 
in the Theory of Sampling (TOS).

On the other hand, in some cases, one cannot 
“wait forever” until all sources of variation for a given 
application are represented in the first training set of 
objects before the starting to establish a particular data 
model. Thus, it is of critical importance exactly what is 
represented in this singular data set and if it has been 
acquired within the framework of a “suitable sampling 
strategy” that forces it to reflect future variation.

Instead of the endless series of partial examples 
(based on local data set structures only) presented 
in the chemometrics and other literature, and from 

which no valid generalisation can be made, this chap-
ter presented first principles, the principles of proper 
validation (PPV), which are universal and apply to all 
situations in which assessment of performance is 
desired—be this prediction, classification, time series 
forecasting or modelling validation. The underlying ele-
ment in PPV is the Theory of Sampling (TOS), chapter 
3, which is needed in order to identify and eliminate all 
bias-generating sampling errors, which are otherwise 
responsible for unnecessary, significantly inflated mea-
surement errors, for which no statistical corrections 
are possible. Invoking the complete body of theoretical 
and practical experiences from ~60 years of applica-
tion of TOS, it was shown to be untenable to continue 
with bland, unjustified assumptions regarding universal 
training data set representativity.

On the basis of chapter 3 and the present chapter, 
it was concluded that re-sampling and cross- validation 
approaches miss out with respect to the crucial sam-
plingTOS variance. This variance can only be accom-
modated by a test set (a second independent sam-
pling—more than one if deemed necessary by local, 
problem-dependent reasons), without which simple 
re-sampling validation on one-and-the-same data 
set will always structurally underestimate the realistic 
prediction error. No theoretical procedure exists to 
derive an approach that can estimate the magnitude 
of this missing part. For this reason, re-sampling and 
cross-validation should logically be terminated, except 
for the cases of exception described in section 8.10. 
Standard use of “blind cross-validation” only performs 
assessment of internal sub-setting model stability. Use 
of cross-validation must always be accompanied by 
full disclosure of the procedures used and the inherent 
method deficiencies described in this chapter.

The main purpose of establishing a model may 
not necessarily be for predicting or for classifying new 
objects, but simply to understand the inherent struc-
ture in the system under observation. The previous 
chapters describe methods that provide insights into 
the underlying structure of any process or system 
under observation, through scores and loadings rela-
tionships a.o. All model interpretation is highly depen-
dent on the number of latent variables retained, and 
therefore it is vital to be able to determine the correct 
dimensionality (rank) of the model. It is important to dis-
tinguish between numerical rank, statistical rank and 
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the application-specific rank, which may not always be 
identical.

Regarding PLSR, a major chemometric regression 
method, a call was made for stringent commitment to 
test set validation based on graphical inspection of t–u 
plots for optimal understanding of the operative X–Y 
interrelationships. Simple visual inspection will also 
allow a reliable premonition of the outcome of any par-
ticular validation approach. There is no justification to 
reject the work effort involved in securing a test set 
for validation purposes, acknowledging that this is the 
only approach which eliminates the deficiencies out-
lined. The comparatively rare occasions when a test 
set is not an available option (historical data a.o.), have 
no generalisation power. The comprehensive under-
standing outlined in this chapter will stand the data 
analyst in good stead when, feeling forced to make use 
of some form of re-sampling. Complete understanding 
and full disclosure of the structural RMSE underestima-
tion deficiency is mandatory in all such cases.

Many reasons are given in numerous traditional 
arguments for continued use of cross-validation and 
re-sampling for validation. The following arguments 
and reasons are not valid:

■■ Complacency: one cross-validation approach/
method for all data sets is an easy buy, but one that 
completely disregards the gamut of vastly different 
data structures and correlations.

■■ Focus is on algorithms, implementation and soft-
ware, without critical thinking.

■■ Unwillingness to investigate consequences of tradi-
tional statistical assumptions (myths).

■■ Resistance to the Theory of Sampling (TOS) for 
complementary understanding regarding heteroge-
neity and sampling process issues.

■■ Misunderstanding, or misplaced universal trust in 
the central limit theorem.

■■ No interest for how “data” and “data quality” 
originate.

■■ Blind adherence to traditions or schools-of-thought: 
“This is the way chemometrics has been doing val-
idation for more than 40 years…”
This chapter mostly discussed how a system can 

be validated using the best available information about 
the origin of the data (objects), Esbensen and Geladi 
[1]. However, validation may have various meanings 
in different scientific communities. Questions like “do 

I use the expected chemical information in my instru-
mental variables to predict product quality”, “do various 
methods give the same interpretation” or “do I find the 
same subset of variables with various variable selection 
approaches?” are examples where cross- validation in 
specific, bracketed situations may be useful in broader 
and more advanced contexts, see Westad and Marini 
[2] for more on these issues.
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