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Principles of Proper Validation: use and abuse
of re-sampling for validation
Kim H. Esbensena* and Paul Geladib
J. Chemom
Validation in chemometrics is presented using the exemplar context of multivariate calibration/prediction. A
phenomenological analysis of common validation practices in data analysis and chemometrics leads to formulation
of a set of generic Principles of Proper Validation (PPV), which is based on a set of characterizing distinctions:
(i) Validation cannot be understood by focusing on the methods of validation only; validation must be based on full
knowledge of the underlying definitions, objectives, methods, effects and consequences—which are all outlined and
discussed here. (ii) Analysis of proper validation objectives implies that there is one valid paradigm only: test set
validation. (iii) Contrary to much contemporary chemometric practices (and validation myths), cross-validation is
shown to be unjustified in the form of monolithic application of a one-for-all procedure (segmented cross-validation)
on all data sets. Within its own design and scope, cross-validation is in reality a sub-optimal simulation of test set
validation, crippled by a critical sampling variance omission, as it manifestly is based on one data set only (training
data set). Other re-sampling validation methods are shown to suffer from the same deficiencies. The PPVare universal
and can be applied to all situations in which the assessment of performance is desired: prediction-, classification-, time
series forecasting-, modeling validation. The key element of PPV is the Theory of Sampling (TOS), which allow insight
into all variance generating factors, especially the so-called incorrect sampling errors, which, if not properly
eliminated, are responsible for a fatal inconstant sampling bias, for which no statistical correction is possible. In
the light of TOS it is shown how a second data set (test set, validation set) is critically necessary for the inclusion of the
sampling errors incurred in all ‘future’ situations in which the validated model must perform. Logically, therefore, all
one data set re-sampling approaches for validation, especially cross-validation and leverage-corrected validation,
should be terminated, or at the very least used only with full scientific understanding and disclosure of their
detrimental variance omissions and consequences. Regarding PLS-regression, an emphatic call is made for stringent
commitment to test set validation based on graphical inspection of pertinent t–u plots for optimal understanding of
the X–Y interrelationships and for validation guidance. QSAR/QSAP forms a partial exemption from the present test
set imperative with no generalization potential. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Irregularly, but with certainty, discussions break out within
chemometrics as to validation—as to proper validation. There are
few other topics within chemometrics which always lead to
personal opinions. At times such discussions have been serious,
broad-ranging and informative for both seasoned and new
participants, while at other times closer to borderline emotional.
However, the matter at hand is exclusively a scientific one and the
discussion format should be restricted to the proper form and
traditions in this arena.
In chemometrics, validation is probably most well known in the

context prediction validation of which there are (at least) four
types: test set validation, cross-validation, ‘correction validation’
(leverage correction is the prime example), and re-sampling
methods (bootstrap, jackknife, Monte Carlo simulation, permu-
tation testing). This tutorial illustrates the central tenets of the
Principles of Proper Validation (PPV) by a detailed analysis of
prediction validation in the specific multivariate calibration
context. PPV is a set of general principles which can also be
applied e.g. with respect to validation of other data analytical or
statistical methods which needs performance testing, e.g.
etrics 2010; 24: 168–187 Copyright � 20
modeling by neural networks, classification evaluation or times
series forecasting.
This tutorial does not present the reader with a complete

catalog of all the many validation practices offered in the
statistics and data analysis literature; instead a minimum set of
the necessary general phenomenological validation character-
istics will suffice. The overlying PPV are concerned with the
question of how to establish a proper validation that is not
derailed by the very many, very different, specific data
structures met within data analytical modeling. A major result
of the present analysis is that there is only one optimal
10 John Wiley & Sons, Ltd.
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approach that fulfills all the demands of proper validation, test
set validation.
proper adj. - adapted or appropriate to the purpose or
circumstance
valid adj. - sound; just; well-founded; - producing the
desired result
validate v.t. - to make valid; substantiate; confirm
1

One reason for much of the often deeply felt differences-
of-opinions regarding what constitutes proper validation relates
to the fact that validation involves both statistical issues and
chemical, physical, data analytical, and physical sampling error
issues. A significant proportion of the historical debate simply
reflects a too restricted point of view—for example that
validation is exclusively a statistical issue, i.e. ‘sampling’ is simply
a matter of drawing from a population of independently sampled
i.i.d. measurements (objects in the data analysis parlance), which
can be called statistical sampling—it most emphatically is not, as
argued below. In the present paper a broader, holistic under-
standing of the compound sampling, analysis and validation
issue is advocated, while taking care not to fall into the opposite,
equally simplistic position, viz that all data matrices result from
sampling from heterogeneous material (an unfortunate mis-
interpretation of several of the papers on the Theory of Sampling
(TOS) presented within chemometrics in recent years). However,
the gamut of data analysis and data modeling indeed do occupy
a realm in which one must always assume the presence of
significant sampling errors, which if neglected, will cause grave
prediction and validation problems. The rarer cases in which pure
statistical sampling complies are simply to be treated in an
identical fashion allowing for unity in all validation endeavors.

1.1. Data quality–data representativity–sample
representativity

The PPV are introduced with a few discussion points related to
the concept of data quality and data representativity leading to
the fundamental issue of sample representativity.
Data quality is a broad, but often only loosely defined term; any

definition that does not include the specific aspect of data
representativity is suboptimal however. This statement is based
on an extensive body of experience and literature regarding the
‘TOS’ [1–23], which is used below in the argumentations pro
proper validation and con cross-validation, most similar
re-sampling methods as well as leverage corrected validation.
Appendix A gives a brief of the principles in the TOS as presented
by the selected literature.
The term ‘data’ is often equaled with ‘information’. It is obvious,

however, that this can only be in a latent, potential form. It takes
data analysis with appropriate, problem-context interpretation
to reveal the ‘information’ residing in e.g. data matrices. In
chemometrics the prime interest is very often on data analysis,
while issues pertaining to the prehistory of a data table usually
receive but scant attention: ‘Chemometricians analyse the data . . .’.
One exception is Martens and Martens [19] which addresses:

‘multivariate analysis of quality’, where the focus is stated to relate
to the ‘quality of information’, which is defined as ‘. . . dependent
on reliability and relevance’. However, reliability and relevance are
open-ended, very general adjectives which, if to be used
J. Chemometrics 2010; 24: 168–187 Copyright � 2010 John Wil
unambiguously, must be given a specific meaning from the
problem context at hand. In a series of recent contributions
inducting the TOS into chemometrics, it was argued that a far
more relevant characteristicon is representativity [1,6,12,14,15,20],
because a precise definition is at hand (qualitative as well as
quantitative), but mainly because the specific definition in TOS
allows for comprehensive understanding of the underlying
phenomenon of heterogeneity.
Against this backdrop, all data analysis contexts include

(at least) a sampling issue, the analytical issue and the data
analysis issue. From our analysis of the use and abuse of
cross-validation below, it will become clear that ‘reliable
analytical information’ can only be based on representative
samples. Any valid definition of data quality, therefore, in
principle must include some reflections on both representa-
tivity and sampling in addition to chemico-physical analysis/
measurement before the data analytical issues. Below, we shall
introduce a critical distinction between statistical sampling
(in the conventional statistical context) and the kind of physical
sampling addressed by the TOS. It is mandatory to be
competent with respect to both these aspects of ‘sampling’.
It is necessary to contemplate the specific origin of any data

set, before concentrating on the interesting data structure
modeling and interpretation issues, including validation. There
may be large, significant, or only small sampling issues involved,
the point being that this issue is unknown, and therefore cannot
be dismissed a priori. In chemometrics, the type of errors
colloquially known as ‘measurement errors’ typically relate to the
X-data, for example in the form ‘instrumental signal errors’, but
of course also refers to all analytical errors pertaining to the
‘referencemeasurements’ (Y-data in calibration). These effects are
incorporated into the Total Analytical Error (TAE). There exists an
extensive experience and literature on representative sampling
which clearly shows that the physical sampling errors often
dominate compared with the strict analytical and data modeling
error effects. An often quoted comparison states that the Total
Sampling Error (TSE) typically ranges 10–50–100� larger than the
TAE [1–4,7–13,15]. In the discussions pursued in the present
paper it is imperative to break the current habit of blatantly
disregarding TSE, because of this quantitative dominance. By
dealing universally with these issues as if sampling issues were
always significant, all cases can be treated identically in a rational
and efficient manner, covering all combinations of large and/or
small statistical errors as well as large/small TOS-sampling errors.
The opposite position (very often met with) is that of assuming

that all sampling errors at all times are insignificant. This
constitutes an illegitimate generalization however, which is
untenable; no general proof of this widespread ‘assumption’ has
ever been presented. This attitude is but a longstanding
misunderstanding within chemometrics, statistics and data
analysis, as demonstrated by a compelling body of evidence
in current validation practice and in the extensive literature
[25–72]. We deal with these issues in full detail below. From this
perspective, chemometric data analysis without sufficient
attention to the full context of relevant pre-data table issues
and considerations (physical sampling, statistical sampling)
cannot be considered comprehensive; indeed it is incomplete.
The issues regarding validation are not about opinions

(personal, institutional), nor about following one or other
established schools-of-thought or traditions (thereby trying to
dodge a personal responsibility for method selection). All
validation issues are fully tractable and lend themselves to
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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analysis, rational discussion and sound, objective and impartial
conclusions.
2. VALIDATION OBJECTIVES

Validation, in the exemplar multivariate calibration context,y.
means assessing or substantiating that the prediction performance
is valid, i.e. the objective of validation is to confirm that a particular
prediction model will work according to its purpose.
This objective does not only refer to the contemporary

calibration/modeling situation, but also to the circumstances
surrounding the future performance for new ‘similar data’. Both
the training and the validation data must be ‘similar’—
emphatically not to one another, as is a prevalent current
misunderstanding, but to those new data sets pertaining to the
‘future’ working situation of the model (delineation of the
necessary criteria for ‘similarity’ is fully elaborated below).
Thus already when designing and selecting a training data set

for modeling (calibration) it is imperative also to pay attention to
how the model is to be validated. Preferentially one should
always be in a position to be able to choose at least one second
data set for validation, here generically called a test set, with
which to represent the future working situation of the particular
data model. All prediction models must be validated w.r.t. realistic
future circumstances. In data analysis, statistics and chemo-
metrics some 10 years ago there was a somewhat rude
awakening to the fact that far too little prediction validation
was on the agenda. In Höskuldsson’s (1997) [17] reassessment of
the entire realm of ‘Prediction Methods in Science and
Technology’, it was described how modeling fit assessment
dominated as compared to the necessary complementary
prediction validation, for which the H-principle of balanced
assessment/validation was promulgated. Today there is a much
more widespread awareness that modeling fit optimization is a
necessary, but not a sufficient, criterion for prediction perform-
ance.
3. TEST SET VALIDATION—A NECESSARY
AND SUFFICIENT PARADIGM

The central theme of the present foray can be stated in
unambiguous terms: All other validation methods are but
simulations of test set validation.
yE

R

w

simulate v.t. - to assume or have the appearance of
characteristics of . . .. . .
There exists one universally applicable validation method,
which apparently in principle and practice can always be carried
out under all prevailing physical, economical, resource allocation
constraints—namely the popular cross-validation method, no
doubt in large measures because one only needs one data set,
the training data set, Xtrain. It will be shown below, however, that
cross-validation is always sub-optimal: cross-validation is struc-
turally, by its own design purpose, never able to achieve all the
necessary objectives of validation.
xemplar—here used in the sense of Kuhn (1969): ‘The Structure of Scientific

evolutions’ [25].

ww.interscience.wiley.com/journal/cem Copyright � 201
On the other hand, the objectives of test set validation are
always structurally correct and complete (fully discussed below).
If a proper test set were always obtainable, no other validation
procedure need ever have been introduced; test set validation
would then be the only validation method in existence. A full
substantiation of the above summary positions follows.

3.1. Validation in data analysis and chemometrics

Internal validation can be used for many different purposes.
Below we discuss both legitimate and illegitimate approaches to
validation. This tutorial is focused on multivariate calibration for
prediction purposes. Cross-validation as used on one data matrix
(X) only, e.g. PCA, MCR, PARAFAC is not covered per se, but most
aspects of the analysis, discussion and conclusions from the
prediction scenario can be carried over to these application
contexts as well without loss of generality.
4. HISTORY OF CROSS-VALIDATION/
RE-SAMPLING

Already in 1931, Larson [25] observed that the data used in
building a model are not good for testing its quality. The earliest
specific mention of predictive cross-validation is Lachenbruch
1965 [26], a PhD thesis from which one article was published [27].
Part of the history and use of cross-validation in sociology is
documented in a review paper [28]. In the historical perspective
the seminal papers on cross-validation in regression were those
by Stone and Geisser, independently published in 1974–1975
[29–32]. The paper by Stone [29] includes a long discussion part
in which many prominent statisticians of the time give praise
and criticism regarding the cross-validation concept. One of
the experts commenting on the Stone paper of 1974 compares
the presented material with Uri Geller’s exploits on television, but
the paper is nevertheless a statistical masterpiece in its own right.
Stone, Geisser and their contemporaries were well aware of the

limitations of their proposed methods and they warned their
readers against frivolous use of them. In 1977, the Stone [33]
paper on asymptotic properties appeared in which an attempt
was made to find out where cross-validation would work and
where not. Examples of applied cross-validation activity in the
statistics literature are Wold [34], Bowman [35], Picard and Cook
[36], Li [37], and Burman [38]. Cross-validation has been used e.g.
for density estimation, model comparison, time series analysis,
latent variable selection and many more applications in
sociology, psychology, medicine etc. The uses in chemometrics
form merely a subset of the much broader statistical and data
analytical scene. For parameter and density estimation, also
bootstrapping and the jackknife were introduced [39,40]. It is
important to note that calibration models made by Artificial
Neural Networks (ANN) have made extensive use of cross-
validation [41] as well.
After the introduction of Partial Least Squares (PLS) regression

in the late 1970s [42], chemometricians quickly learned to use PLS
regression for making calibration models and using these models
for prediction [43–46]. There was a distinct need for a technique
for selecting the optimal number of PLS components (optimal
model complexity) and for quantitative determination of the
predictive performance. Martens et al. [47] give the advice of
using cross-validation or jackknife to avoiding over-fitting. Ståhle
and Wold [48], Haaland and Thomas [49], and Osten [50] are
0 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 168–187
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among the first to take up a systematic study of this possibility
by cross-validation. Later, the textbook [51] introduced cross-
validation as a de facto standard in multivariate calibration. From
then on, the use of cross-validation in all its forms and variants
proliferated in chemometrics, mainly because software compa-
nies were soon to offer it as a default mode of validation. It is clear
that one reason for the widespread popularity of cross-validation
is related to its ease of implementation and programming.
1

5. CROSS-VALIDATION IN
CHEMOMETRICS

Cross-validation can be used for ordinary least squares modeling,
but then there is no need for estimating how many components
should be used. Themain use of cross-validation in chemometrics
is and has been for estimating the number of components to be
used for prediction in latent variable models such as PCR and PLS.
As a bonus, an average estimate of the prediction error would
appear to be at hand as well.
A regression model by PLS (similarly PCR) can be written as

follows:

y ¼ Xbr þ fr (1)

where y is the mean-centered vector (I� 1) of responses; X is
the mean-centered matrix (I� K) of predictor variables (training
data Xtrain); br is the vector (K� 1) of regression coefficients; fr
is the residual vector; r¼ 1,. . ., R is a counter for model rank
(pseudorank, model dimensionality), and R is the true math-
ematical rank of X.
One may define The Sum of Squares of the residual SSres,r as

follows:

SSres:r ¼ f0rfr (2)

Historically, the primary role of (cross) validation was to find the
optimal value for r, ropt. Under-fitting (r too low) results in a high
modeling bias, while over-fitting (r too high) leads to an inflated
prediction variance. The optimal number of components is the
one which gives the best combination of low bias and small
variance [51,52]. It is clear that there is not a universal solution to
such a balancing act—there is a very strong relationship to the
specific data structure particularities. The model built in Equation
(1) is used for the prediction of new responses, Xnew:

yhat;r ¼ Xnewbr (3)

where yhat,r is the vector of predicted response values, mean-
centered with the mean of y (Equation 1) and Xnew is the matrix
(J� K) of new X-data, different and independent from X and
mean-centered with the same mean values as X (Equation 1).
Xnew may also be sometimes called Xtest. In the conventional

statistical context, Xnew is traditionally viewed as coming from the
same population as the training set. New objects, new
measurements are viewed as i.i.d. measurements. This view is
distinctly different from that based on a comprehensive
TOS-based understanding of ‘new measurements’ as originated
by a compound sampling-and-analysis process (refer to
Appendix A).
In order to test the quality of the prediction, some true y values

corresponding to the objects in Xnew have to be known; these are
often called reference measurements in the validation context.
J. Chemometrics 2010; 24: 168–187 Copyright � 2010 John Wil
This allows the calculation of a prediction residual
Sum-of-Squares:

SSpre;r ¼ ðytrue � yhat;rÞ
0ðytrue � yhat;rÞ (4)

where ytrue is the reference value of the response, sometimes
called the ‘true value’ and SSpre,r is the Sum-of-Squares prediction
residual for an r-component model.
The most often used prediction performance statistic is

RMSEPr ¼ ½SSpre;rJ�1�1=2 (5)

where RMSEPr is the Root Mean Square Error of Prediction for an
r-component model.
Dividing by J makes comparison between test sets of different

sizes possible and taking the square root gives the RMSEP the same
units of measurement as the responses, which is often convenient.
RMSEP can advantageously be expressed also in a relative manner
[%], for example with respect to the average ytrue level.
Plotting SSpre,r or RMSEPr as a function of r often gives an

indication of which value of r gives the ‘best model’ i.e. the model
complexity that results in the lowest prediction error. This is a kind
of scree plot, but one with a clear minimum or a low plateau. In
either event, it is easy to use this graphical illustration for visual
inspection, arriving at ropt with a degree of inter-personal
robustness apparently acceptable to everybody. One should
realize that ropt often is a fantasy number. There is usually a range
of values that for all practical matters are equally good within
existing uncertainty bounds.
The average bias can be calculated as

Bias;r ¼ 10ðytrue � yhat;rÞJ�1 (6)

where 1 represents a vector of ones size (J� 1).
Assuming a data set, X consisting of I objects, the different

types of (cross) validation proposed in the statistical literature are
as follows:
(1) H
ey &
old-out: splitting the data in a calibration (C objects) and a
test set (T objects): I¼ Cþ T.
(2) L
eave-one-out: each object is left out once; this requires I
models to be made [36]. This approach is well known by the
name ‘Leave-One-Object’ out (LOO). This has also been given
the unfortunate name ‘Full Cross-validation’. This variant is
most related to Jackknifing, but can also be found within
chemometrics, often then misinterpreted as a particularly
strong validation—it most emphatically is not (it is the most
slack validation method in existence, see further below).
(3) L
eave M out: where all possible subsets of M objects are left
out once. This requires I![(I�M)!]�1[M!]S1 models to be made
[53]. This variant is mostly related to Bootstrapping, where the
same object can appear more than once in the left-out part.
(4) V
-fold: here the data set is partitioned into I/V parts and I/V
models are made [31]. Segmented validation is a useful cover
name for this and related approaches in which one leaves out
a fraction of I (a segment).
(5) M
onte Carlo based cross-validation; a huge number of sub-
sets of different sizes for holding out is created, accepting any
resulting number of repeat objects included in the modeling
data basis. In this approach it is the sheer number of (many)
subsets, that is supposed to derive the desired information.

The V-fold and LOO methods have been very popular in
chemometrics, precisely because they are fast in calculation and
Sons, Ltd. www.interscience.wiley.com/journal/cem
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easy to implement. Equations (1)–(4) describe a hold-out
procedure, but can also be modified to give a V-fold cross-
validation procedure. For example, by putting all available data
(also Xnew) in X, using LOO and V-fold are very easily
implemented. In these cases, Equation (3) is used repeatedly
for the left-out objects, Equation (1) is used repeatedly on the
left-in objects and Equation (4) is used for accumulating results
obtained for the left-out objects. Similar to Equation (5), a new
definition can be made:

RMSECVr ¼ ½SSpre;rI�1�1=2 (7)

where RMSCVr is the Root Mean Square Error of Cross Validation
for the r-component model and SSpre,r is the accumulated sum of
squares for the left-out parts.
In summary, cross-validation is typically used to estimate at

least two different parameters of the model: (1) ropt and (2)
RMSECVr obtained for ropt. In the context of the present
discussion, the first objective is related to what is often referred
to as internal validation, while the second is supposed to be
related to the external validation. A point in the present analysis is
that the latter is structurally impossible however.

5.1. Sequential component assessment

Some chemometrics approaches are based on only testing the
new, added part when model dimensionality is increased. This is
based on the technique from a Wold [34] paper where this was
used for PCA models. One basically tests the ratio [54]:

R ¼ SSpre;rþ1=SSres;r (8)

where SSpre,rþ1 as in Equation (7) is used.
This ratio is demanded to be less than 1 (or 0.95) if the added

component can be said to improve the predictive capability of
the model. There are confusingly many stopping rules for
deciding for which value of components this actually happens.
The use of the sequential testing is, however, based on outdated
algorithms which calculated principal or PLS components one
after another.

5.2. Leverage corrected residuals

Leverage corrected residuals were introduced a long time ago
when computers were too slow for cross-validation on large(r)
data sets. In Equation (1) it is always possible to make the residual
part smaller by making r larger. In order to avoid abuse of this
property, one may multiply the residuals by a penalty that
increases as r goes up. Leverage can reach 1.0 [at the limit] as r
increases, so dividing by [1-leverage]a blows up the residuals if r
becomes too large [51]. The theoretical background is a t-test for
residuals [55]. Leverage-corrected validation no longer has any
serious function.

5.3. Permutation tests

Permutation tests were introduced in chemometrics by Sergio
Clementi [56].
A specific approach which can be deployed towards object

selection and chance correlations in prediction has seen wide
recent application in chemometrics; this approach applies
permutation(s) to the response variable y, i.e. randomization of
y [57]. In this approach the ordering of the response vector
objects is randomized while the descriptor matrix, X stays stable
www.interscience.wiley.com/journal/cem Copyright � 201
with its original ordering. Multivariate calibration models should
now be statistically insignificant; t- or F-tests can be employed to
discriminate chance fluctuation from real correlation. It is clear
that this approach constitutes a very useful check against chance
correlations, but is not applicable to assess anything regarding
the future prediction performance.

5.4. Cross-validation in recent chemometrics history

The questions about how to assess how many components
should be used in an optimal PLS model, ropt, and how good the
model then becomes are among the most discussed issues in
chemometrics.
During the 1990s, cross-validation was established in chemo-

metrics mainly by the proliferation of software packages. Some
interesting papers specifically dealing with cross-validation
appeared in the literature. Cruciani et al. [58] introduced the
Standard Deviation of Errors in Prediction (SDEP) parameter,
which is RMSECV for a hybrid between cross-validation and
bootstrapping. They give an illuminating discussion on the good
and bad qualities of the leave-one-out method and show
graphically that different subset sizes in the V-fold method have
an effect on SDEP. They show this for a number of food chemistry
and QSAR examples. The follow-up paper by Baroni et al. [59] is
about the use of SDEP for variable selection.
Wakeling and Morris [60] introduce a significance test for

scree plots used for selecting the number of PLS components.
The authors use Monte Carlo simulation to estimate distribu-
tional properties of a coefficient of determination, found by
cross-validation. Forina et al. [61] test the use of validation in
near infrared calibration. They compare single evaluation set
(SES), cross-validation (CV) and repeated evaluation set (RES).
The conclusion is that SES gives unstable results, CV is better and
RES is best, but they also mention that bad choices of training
and test set and unfamiliarity with the data can be the real
source of the differences. Eriksson et al. [62] present an excellent
paper on validation in QSAR modeling. They mention external
validation, cross-validation, permutation testing and graphical
methods for checking model and residual. For hold-out
(external) validation the authors mention that a proper selection
of training and test sets has to be done and that this may
be difficult in QSAR situations. Therefore, a combination of
permutation tests and cross-validation is the only possible
way to go but they also stress checking other model properties
than just RMSECV. They show some results using example
data sets.
Denham [63] tries to estimate prediction intervals in PLS

modeling by bootstrapping and cross-validation in cases where
the number of PLS components need not be estimated. Wehrens
and van der Linden [64] try to explain bootstrapping as applied to
Principal Component Regression (PCR). Among the many
subjects handled is variable selection and the comparison of
models using all variables with those using only selected ones.
Martens and Dardenne [65] use Monte Carlo simulation in a large
database (>900 near infrared spectra of maize and protein
concentrations). The latter paper is written in a confusing fashion
and the conclusions are unfortunately vague. Denham [66] is
a follow-up of Denham [63]. This second paper is on the
distribution of errors in PLS models. The author compares an
analytical approach to re-sampling. The examples show that full
cross-validation and bootstrapping are equally good as the
analytical approach.
0 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 168–187
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Other recent papers give good overviews of the validation
literature [57,67,70]. Wiklund et al. [57] give a comprehensive
introduction to the re-sampling situation in chemometrics. They
also describe two different ways of doing cross-validation: one
model at a time and one component at a time. They show results
for a number of data sets and introduce a permutation test. The
paper by Filzmoser et al. [67] gives a lucid introduction to the
cross-validation and test set calibration and validation principles
used in their ‘repeated double cross validation’ approach, but the
proposed method still tries to extract too much information from
too little data. This approach is discussed in more detail below.
A conclusion from the papers referred to above is that

re-sampling methods can be used for very many objectives: (1)
selection of a number of PLS components, (2) estimation of an
RMSECV for the PLS model, (3) estimation of a distribution and
confidence intervals around the RMSECV, (4) comparison of
all-variable and variable-reduced models [68] (also called cross-
model validation). This easily leads to confusion and certainly a
huge overfit as re-sampling is used for all the mentioned
purposes based on a small(er) data set, as is often the case.
Bootstrapping (and Monte Carlo) seems to be just a cover-up
creating the illusion of getting more out of the data than what is
in fact there. Another observation is that many authors seem to
be happy about writing validation algorithms than offering
comprehensive analysis of the data structures and their impacts
on the otherwise impressive algorithms.
Kohonen [69], in a recent thorough overview, remarks that full

cross-validation (often termed LOOCV) is generally seen as the
universal standard and refers to Gómez-Carracedo et al. [70] as
the progenitor for this sweeping claim. Kohonen discusses
the many historical uses of PRESS (Predicted Residual
Sum-of-Squares).
A related approach is based on PRESS for the component aþ 1,

which is compared with the Residual Sum-of-Squares for the total
of the preceding a components, RSSa. The minimizing criterion is
the so-called RR, defined in the following fashion:

RR ¼ PRESSaþ1=RSSa

Kohonen [71] traces the chemometrics validation history in
significant detail; in the discussion below use is made of this very
useful overview.

5.5. Models and Monte Carlo simulation

An extreme version of cross-validation is Monte Carlo simulation
where very many (thousands or even millions) re-samplings are
carried out. Based on the particular scenario investigated and the
particular model(s) studied, this approach can be warranted or
not. Some examples will explain this. A similar view on models for
calibration is also given in Varmuza and Filzmoser [71].

5.5.1. Fundamental models

The laws of physics and the properties of atoms are universal; one
often speaks of ‘hard models’. Model testing is not needed in this
regimen. As an example one can produce a mixture or known
composition, particle size, thickness and density and simulate
irradiating it with X-ray photons from a well-defined energy
distribution. This then allows calculation of very many resulting
X-ray fluorescence spectra by Monte Carlo simulation and
statistical conclusions about the obtained spectral population
can be made. See an example in Czyzycki et al. [72].
J. Chemometrics 2010; 24: 168–187 Copyright � 2010 John Wil
5.5.2. Unique models with lots of underlying data

As an example, in Process Analytical Technology (PAT) one
monitors, studies and controls industrial processes, either in toto
or with a focus on particularly interesting processing units. An
example of using Monte Carlo for this purpose is Sin et al. [73] PAT
systems are in principle unique; no two industrial processes are
sufficiently so identical (even if they perform the same task) that
they can be treated as case 1 above. Industrial processes are
especially also varying over time because of drift, upsets, outlying
(unique/no longer representative) samples/measurements or,
more fundamentally, because parts erode or wear out, causing
drifts/upsets etc.—and eventually have to be replaced. Because
of these facts, well known in all PAT sectors, a uniquemodel has to
be made for each individual process, and very nearly always have
to be updated at regular intervals. It should be mandatory also to
perform a suitable validation, for every new model updating . . ..
Re-sampling and Monte Carlo approaches can be used for the

more narrow model building purpose, usually because a large
population of past process measurements exists. If the
population of available data is large enough, the hold-out
approach is a natural idea. This case cannot be generalized to the
future prediction performance validation case however.

5.5.3. Unique models with limited and/or unreliable data

In Quantitative Structure Activity Relationships (QSAR) a rather
limited group of molecules are tested, say for toxicity (e.g. by
measuring LD50 on some bacteria strain or similar), see Venkata-
pathy et al. [74] for an example. Such LD50 measurements are
invariably imprecise. Whatever is done, the relationship between the
molecular descriptor indices and properties and LD50 values is often
weak. PerformingMonte Carlo simulations in order to test prediction
performance in such systems is obviously close to meaningless.
Bootstrappingmay be compared toMonte Carlo simulation but is

less computer-intensive. A simple example can explain this. Assume
a certain number of playing cards are available, say: 1 (ace) to 10 of
diamonds. This is a finite subpopulation of 10 cards. With these 10
cards all subsets of 5 (poker hands), as an example, can easily be
simulated. There are 252 unique such subsets. The means or
medians of all these subsets form an impressive histogram, but still
there are only 10 playing cards whose sub-distribution is ‘analyzed’.
None of the other 42 playing cards ever enters this particular
bootstrapping application. The key question to be answered here is:
which population is studied: the original population of 52 cards?—
or the subpopulation of 10 selected cards?—or the population of
252 poker hands made from the subpopulation? Is using 10 cards
a legitimate option for making inferences for the entire deck?
This would obviously be nonsensical—but this is exactly what
re-sampling is doing inmost software implementations. If ‘ten cards’
were replaced by ‘tenmeasured samples’, every scientist in his or her
right mind would agree that there are only ten samples and that
using these as representing the entire lot can only be done based on
full understanding of all pertinent issues (lot heterogeneity issues,
sampling process errors etc.). Another question that may be asked is
what happens to the degrees of freedom when very many models
are made. Are there degrees of freedom left for judging a residual
standard deviation?

5.6. Discussion: re-sampling for proper validation

Kohonen (2009) [65] presented to the communities concerned
about proper validation a most useful comparison of pretty well
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem

7
3



Figure 1. Eight principal covariance (correlation) data structure situ-
ations as depicted by their manifestation in PLS t–u plots. There are

three influencing parameters which determine the appearance of all T–U

data structures: (i) the number of objects N, (ii) the degree of linear (or

nonlinear) correlation present, and (iii) data clustering, or grouping (data
clumpiness). (a) A-type: strong data structure with many samples; (b)

K. H. Esbensen and P. Geladi

1
7
4

all of the most used validation approaches specified above; in
particular he compares RMSECV(LOO), 10-segmented RMSECV,
Wold’s R (0.95 cut-off limit), RR and MCCV with RMSEP (test set
validation). MCCV is a much used statistic pertaining to these
scenarios (Monte Carlo Cross-validation).
Regarding one-and-the-same well selected training data set

used for comparison, including a specific test set also produced
during the investigations, ropt for these six central validation
approaches comes out as 10, 10, 9, 5, 10, and 4 components
respectively. In this example cross-validation is not robust,
cross-validation approaches by comparison tend to over-fit (test
set validation points to four components).z While based on only
one data set, there are important implications or more than local
interest, as this example echoes very many similar experiences
accumulated over decades both within chemometrics and
beyond. The key issue is that each data set is unique in the
sense of its inherent more-or-less heterogeneous distribution of
data objects. ‘Competing’ validation approaches often end up
with similar significantly different results (regarding ropt as well as
RMSE estimates). After his extensive comparisons, Kohonen
remarks (2009: p. 45) [65]: ‘No (validation) method . . . compares
to [the] usage of an independent data set’, which is in full
agreement with the tenor of the present treatment. The
comparison above is of course strictly speaking only valid for
the specific data set involved. It will always be possible to
disagree with the generality of conclusions based on only one
data set. No strong claims can be made as to ‘all’, ‘most’, or ‘many’
data sets based on one particular data set only. The validation
literature is ripe with the desire for generalizations based on one,
or two specific data sets, examples are legio, but always remain
illegitimate generalizations.
The universal point here is, however, that particulars cannot

stand in for general relationships, except in one sense: Only the
specific type of data structure present in any given data set may
serve as a basis for more general conclusions—if proper caution
is executed.
In the present work we aim to derive conclusions, that can be

generalized, regarding re-sampling from the point view of
primary validation principles only.

5.7. Data structure display via T–U plots

A classical formulation [51] of the PLS algorithm based on
Equation (1) is as follows:

t1 ¼ Xw1 (9)

u1 ¼ yq1 (10)

where t1 is the first PLS X-score; w1 is the first PLS X-weight; u1 is
the first PLS y-score; q1 is the first PLS y-loading, and X and y are
mean-centered as defined in Equation (1).
Equations (10) and (11) are given here for only the first

component, but t2 and u2, t3, and u3 etc. can be easily calculated
as well. Plotting ua against ta, a¼ 1,. . ., A is a reflection of the
so-called ‘inner relationship’. This ‘t–u plot’ is a very useful vehicle
for visual check of whether a possible next component is
zFor completeness, note that Kohonen [66] dismantles use of the R2 statistics

as well; there is no need to go into any particulars here, as it is well known that

this statistic is severely sensitive to all data set structure irregularities, ibid; see

also Høskuldsson [17].

www.interscience.wiley.com/journal/cem Copyright � 201
meaningful or not, as evidenced from the ‘inner’ partial
regressions. Although the PLS algorithm can be written without
using Equations (9) and (10), it is always informative to assess the
data structure by t–u plots.
In order to be able to take proper action with respect to the

actual data structure present in training-, test-, or ‘future’ data
sets, a typology of the principal types of data structures
associated with multivariate calibration is presented in
Figure 1. There are three underlying ‘parameters’ characterizing
the particular manifestations of any multivariate data structure:
(i) the number of objects N, (ii) the degree of linear (or nonlinear)
correlation present, and (iii) data clustering, grouping (data
B-type: weak data structure with many samples; (c) C-type: strong data

structure with few samples; (d) D-type: weak data structure with few

samples; (e) E-type: clumpy data structure; (f ) F-type: degenerated data
structure; (g) G-type: nonlinear data structure; (h) H-type: the extreme

outlier case.

0 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 168–187



Figure 2. Systematic behavior of RMSECV as a function of the number of

PLS components in the model. Prediction Y-error variance estimations
decrease as a function of increasing number of cross-validation segments

[s¼ 2,3,4,. . ., N]. Irregular data structures will cause minor deviations from

from the general relationship depicted.
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clumpiness). The four first cases shown constitute a systematic
series of strong/weak correlation versus small/large N, outlining
the gamut of typical data sets for which legitimate PLS models
are relevant. Three of the four latter cases represent deviating
covariance data structures for which PLS modeling should never
even be contemplated.
Based upon the schematics in Figure 1, it is easy to appreciate

that an empirical match between cross-validation and test set
validation (‘similar’ ropt and RMSEP) is but a mere reflection of a
particular strong correlation between the X- and Y-spaces in a
given data set.
T–U plots must be inspected for every regression model being

validated. There are traditions within chemometrics which does
not include this imperative, instead prescribing ‘blind’ adherence
to one selected version of segmented cross-validation, e.g. full
cross-validation, or a fixed number of segments. Even a cursory
overview of the principal covariance relationships between X-
and Y-spaces delineated in Figure 1 leads to the inescapable
conclusion that a fixed, universal number of segments will work in
highly different ways depending on the specific data structure
present. This goes a long way to explain why repeated
cross-validation, identical but for alternative starting segment
definitions, often may lead to significantly different validation
results—this is always a strict consequence of a particular data
structure regularity/irregularity. A fixed number of segments can
never be said to pay the necessary problem-dependent attention
to the many different data structures met with. There is thus
ample justified reservation as to the often-claimed ‘robustness’ of
cross-validation. Based on Figure 1, all types of varying validation
results are comprehensible and need not lead to confusion.
Upon reflection, this issue is but the reverse side of the also

often claimed optimistic, but not fully thought through, cross-
validation credo: Validation is on safe ground as long/if several
variants of validation, including several different segmented
cross-validation result in similar validation results (identical
number of components, ‘similar’ RMSECV). All is indeed well if/
when this hopeful situation occurs—but the only thing which
has been demonstrated is a situation of strongly correlated X–Y
spaces, as depicted in Figure 1a, c, f, or h. Alas, nothing has been
revealed as to the future prediction potential, unless it has been
independently proved beyond reasonable doubt that this strong
X–Y correlation remains the defining feature also of other data
sets, indeed all other ‘future’ data sets. Such a demonstration is
precisely the objective of test set validation, at least as far as one
new data set goes, while all re-sampling approaches only deal
with the one-and-only Xtrain data set.
The conclusion is clear—cross-validation is not a validation

which incorporates information as to the future use of the
particular data model. Cross-validation is rather an internal
sub-setting stability assessment vehicle; cross-validation speaks
only about the robustness of a particular model, as gauged by
internal sub-setting of a training data set.
Still more insight can be had—for one-and-the-same data set

of the type like cases (a)–(d) in Figure 1, there will always be a
strong systematic regularity w.r.t. alternative segmented cross-
validations with the number of potential segments increasing
[s¼ 2,3,4,. . . N]. Figure 2 depicts the systematics of ‘RMSEP versus
# PLS-components’ plots, corresponding to the progression of all
(N� 1) alternative segmented validations.
There will always be a lowest RMSECV when the number of

segments is at its maximum, N (corresponding to LOOCV).
Conversely, when s¼ 2, RMSECV will be at its maximum. These
J. Chemometrics 2010; 24: 168–187 Copyright � 2010 John Wil
relationships hold for all non-extreme covariance data structures
when cross-validation is performed on one-and-the-same data
set. Exceptions occur but are simply due to a larger degree of data
structure irregularity, which of course at times will result in minor
deviations from these principal systematic relationships. This
generic illustration was first presented in the seminal textbook on
multivariate calibration [51], but the significance for the validity of
cross-validation was apparently overlooked. Based alone on a
gradual reduction in the number of segments, RMSECV will
increase and vice versa. Illegitimate conclusions may easily result
if the data analyst succumbs to the temptation to select the
particular segmentation level, s, which happens to correspond
to the lowest RMSECV—such a voluntary this approach is wholly
unscientific however. The objective of validation is most
emphatically not to select the lowest possible RMSECV among
a set of alternative segmented cross-validations—the objective is
to estimate the most realistic prediction MSE as applicable to the
situation pertaining to all future data sets. As shall be shown, this
actually precludes cross-validation altogether.
Careful inspection of the pertinent t–u plot of any multivariate

calibration model is the only remedy possible in order fully to
understand and interpret results stemming from ‘blind’ cross-
validations. This is possibly a reason why some traditions actively
avoid inspection of t–u plots; these give an inconvenient insight
into the real-world X–Y data structure which may indeed be very
different from the universally applied assumption of a reasonably
strong correlation between X and Y [Figure 1 (a–c)].
Such potential validation information does not reach the data

analyst if systematic inspection of t–u plots is not on the agenda.

5.8. Remark on multiple validation approaches

When using segmented cross-validation several times over, or
when using a multitude of different validation approaches, there
is always a tacit wish that all (most) approaches will lead to
(practically) the same optimal number of components. When this
happens it is claimed that this situation is significant of a
successful validation. From the above it follows that this is but a
hollow truism—upon reflection, it is clear that all that is proven
again is that a particular data structure is characterized by a
strong (X, Y) correlation, and again nothing regarding the
universal application of this or that variant of re-sampling
approaches on future data sets was proven. There are a much
higher number of data structures for which this does not hold.
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 3. Synoptic display of Xtrain and Xnew (Xtest) furthering an objec-

tive basis for evaluation of the empirical data structure differences and
their qualitative and quantitative expressions pertaining to the two

independent sampling/analysis sessions. The two data sets shown display

significantly different loading weights, w, and the training set (white)
displays a distinctly smaller variance than the test set (black). Principal

sketch; increasing data structure irregularity will blur these principal

relationships visually, but the basic principle displayed remain the same.
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5.9. Remark on non-sequential components

When data structure modeling allows for the possibility that not
all sequential components necessarily are of interest, e.g.
multi-block modeling, variable selection a.o. improvement of
modeling fit alone (in combination with none, or some prediction
performance issues), there are a suite of well-known statistics and
optimization criteria available, see overviews in e.g. Kohonen [65],
Høskuldsson [17], Gómez-Carrasco [66]. In these situations, as
well as concerning nonlinear modeling/prediction it is necessary
to consider all possible exponent- and cross-terms. The number
of terms grows exponentially and it is no surprise that no strict,
formalized way to handle this situation exists; but more-or-less
voluntary applications of one or more re-sample techniques
certainly have no superior merit on its own. A particularly inspired
approach concerns the use of PDF (Pseudo Degrees-of-Freedom),
van der Voet [75], which directly compares prediction errors from
both test set validation and cross-validation.

5.10. Verdict on data set splitting

‘Why is sequential application of an identical sampling protocol
in order to produce two distinct data sets, Xtrain (now) and Xtest
(reflecting the future application situation as possible) different
from splitting a doubly large Xtrain simply sampled in one
operation?’ This is undoubtedly the most often heard question/
remark in discussions on re-sampling for validation. This issue
reflects a strong desire for a simple, universal method. Alas,
the complexities of proper validation (realistic assessment of
the future MSE) do not comply with such a shotgun approach
as this is most unfortunately misnamed ‘test set splitting’
suggestion.
Taking care of the number of measurement (samples, objects),

N, is the easiest obligation of the experimentalist/sampler/
analyst/data analyst. As is well known it is far more important to
be in relevant control of the variance influencing factors when
trying to secure a sufficiently representative ensemble of N
objects (samples). There are usually few very useful guidelines in
this game, except the universal stipulation that the training set
must span the range of Y-values in a sufficient fashion, which is a
problem-dependent issue; often this is the only consideration
given to the issue of ‘representativity’. This is a much too shallow
understanding however.
The present work emphasizes the critical issue of under-

standing the phenomenon of heterogeneity as well as being in
full command regarding identification and elimination of all
‘incorrect sampling errors’ (ISE), lest an uncontrollable sampling
bias dominate the measurement uncertainty budget. The
sampling process, dominantly governed by influences from ISE
if these are not properly eliminated, does not give rise to
analytical data which follows any known statistical distribution,
Appendix A and literature [1–23]. However, the data structure of
any data set, as depicted in a t–u plot, is a fair reflection of the
sum total of all influencing factors on the measurement
uncertainty. Sampling using a specific protocol acknowledging
the principles of TOS ensures that all circumstantial conditions
influence the sampling process in a comparable manner
regarding both Xtrain and Xnew, i.e. they are given the same
opportunity to play out their role irrespective of who is doing
the sampling, and who is doing the sample preparation and
analysis, etc. This is the role of an objective sampling_and_
analysis protocol.
www.interscience.wiley.com/journal/cem Copyright � 201
Circumstantial conditions are capricious; however, they are
time-varying—and in general they defy systematization. But any
second sampling from a lot (we very deliberately refrain from
using the too simplistic terminology ‘from the population’) will
always reflect the sampling/analysis objectively—precisely at the
time, or at the place (in the future setup) pertaining to the second
sampling session. The crux of the matter is that the sampler has
no control over which, and to which degree, these conditions
may have changed between sampling the training data set, Xtrain
and the ‘future data set’, Xnew. This simple ‘second sampling at a
future time/place’ is the crucial information carrier ‘from the
future application situation’ that must be included in the
validation procedure.
This difference can be of any magnitude: insignificant,

intermediate or gross. But this ambiguity is immaterial since
the changing conditions cannot be described or quantified; they
are specifically those factors and circumstances which are not
actively involved; indeed cannot actively be involved in the
specification of the sampling situation. All that matters is that
the second data set will unquestionably display the data structure
reliably as related to the second sampling session (or to a third
etc.). To the degree that this has changed, there is now a
trustworthy representation hereof involved in the validation, as
illustrated by Figure 3.
What is implied here is that to the degree such differences are

found to be present between the training data set sampling and
the future application situations (time, place), these must be
involved in the validation procedures, or the model estimations
(ropt, RMSEP, other . . .) will not be fully relevant for the purpose it
was intended to serve. It is immaterial that it often is argued that
in ‘some cases’ this difference is not of sufficient magnitude to be
of influence. The winning argumentative point is that it is not
possible to identify such cases a priori. All situations are unknown
at the time of decision of which type of validation to perform.
As a matter of fact, the only way this dilemma could ever be
circumvented would be by carrying out both a test set validation
and one or more cross-validation alternatives. If this is the case,
0 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 168–187



Figure 4. Relationships between RMSE estimates as a function of model

complexity (a). Leverage-corrected RMSE estimates are universally lower

than those pertaining to either re-sampling or test set validation. Seg-
mented cross-validation estimates are structurally lower than those

stemming from test set validation. For one-and-the-same data set, Xtrain,

the systematic relationships between the different segment variants are

only indicated here, they were laid out in completion in Figure 2.
Stronger-and-stronger (X,Y) correlation will result in more-and-more

similar curves in this type of plot, see text for full details.
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one would never accept the structurally inferior cross-validation,
however, relative to the more realistic test set alternative.
The logical conclusion is to decree a test set validation

imperative. Nothing adverse will ever result from always applying
test set validation, and one is supplied with superior information
in one operation, since test set validation as a matter of fact
delivers estimates of both ropt and RMSEP—while everything is
uncontrollably risky (possibly downright wrong) by basing a
re-sampling validation approach an in principle un-testable
assumption of global training set representativity.
This line of argumentation also sheds light on the issues

surrounding partial use of cross-validation. It is often claimed that
cross-validation is a good help to determine the ‘correct’ number
of factors, i.e. cross-validation is often accepted for internal
validation purposes—while it is often claimed that for the most
reliable estimation of RMSEP, a ‘completely independent’ i.e. an
external validation data set is required. The present treatment of
course has no quarrels with the latter stipulation—but is in total
disagreement regarding any use of cross-validation for determi-
nation of ropt.
It is not in the best interest to invoke a two-step validation

approach. By using a one-step procedure, test set validation, one
is directly presented the most reliable estimate of RMSEP based
on the objectively correct number of components, all in one go,
since test set validation manifestly always will include all
sampling and measurement uncertainty effects originating from
whatever changed circumstantial conditions.
A traditional argument is often heard: ‘IF there is a significant

difference between the data structures of the training vs. the test
set—is there any reason to suppose that an overarching model
will fit the data? Without prior knowledge as to this difference . . .
why should the model based on the training data set also fit the
‘‘future’’ data sets?’ – This is a very pertinent question, as it goes
directly to the heart-of-the-matter of validation: If there is a
significant data structure difference, it is imperative that the
training data set model is evaluated only by the test set approach
which manifestly incorporates the second (future) data structure.
The resulting RMSEP will always result in a higher RMESP estimate
than any cross-validation alternative, and will ipse facto be the
more realistic estimate, see Figure 4.
There is always the alternative to augment the training data set

with the test set (or portions hereof) if it can be established that
the data structure difference is beyond acceptance. Such a
situation is a strong indication that the data structure at the
training data set calibration is inherently unstable however, and
nobody would accept just a local cross-validation in such a case.
In some situations, typically in process contexts, there is a relaxed
acceptance of the inevitable lapse into such a unacceptably
changed data structure with ‘time’ (or ‘location’); the order of the
day is of course simply to accept this and to instigate some form
of ‘model updating’. Within many process technology commu-
nities, updating is a standard issue. There may be several
alternative ways to go about this, all strongly dependent on the
particular contextual setting, but the main issue is that cross-
validation is correctly viewed as quite unable to deliver the
necessary realistic MSE estimate of future performance.
The above arguments are the principal reasons for not splitting

a training data set, however large. With splitting there is no
information pertaining to the future application situation at all,
the number of objects notwithstanding. Amassive redundancy in
numbers is mistaken for a suitable basis for future performance
validation. Test set validation is the best possible valid attempt to
J. Chemometrics 2010; 24: 168–187 Copyright � 2010 John Wil
remedy this predicament—by securing (at least) one new data
set from as far in the ‘future’ as is logistically possible. By
accepting that the circumstantial conditions may/will change (it
is only a matter of time), a test set is the best one can do within
reason.
From this discussion it also transpires that a regimen of

systematic, regular test set validation model checking is a wise
approach within the arena of quality monitoring and quality
control. The above discussion appears particularly easy to
understand in the process technology, process monitoring and
control settings. Proper process sampling in this context is
treated specifically elsewhere [20,23].

5.11. Cross-validation does have a role—model
comparisons

All is not lost for cross-validation however. In the arena of model
comparison (models of structurally identical nature, but of
optional alternative parameter settings: e.g. different pre-
processing alternatives, different X-variable selection alternatives,
etc.) cross-validation would appear to be a particularly relevant
approach. For this specific purpose, cross-validation furnishes
precisely what is needed, a general identical model performance
framework within which alternative parameter settings/values
can be objectively compared. In this context it is formerly a
necessity to use the same number of segments for all alternative
validations. In this area of applied validation, there is very good
use for cross-validation, although it is interesting to contemplate
how one is to deal with the possibility of a different number of
components ropt for alternative optimized models. Even for this
legitimate use of cross-validation there is always a demand for
responsible disclosure of the structural RMSE underestimation
deficiencies a.o.
The special case of QSAR/QSAP is treated more specifically

below.
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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6. DISCUSSION

6.1. Systematics of cross-validation

It is advantageous to treat all cross-validation variants under a
common systematic heading, here termed segmented cross-
validation. This allows significant simplification in discussing
historically disparate variants: Leave-one-object-out (LOO), the
plethora of differently segmented cross-validations and the
so-called ‘test set split’ option (which is a particularly obfuscating
terminology for an otherwise straight 2-segmented cross-
validation approach. Indeed this name could not have been
chosen in a worse fashion; ‘test set split’ is but a myth).
Depending on the fraction of training set samples (totaling N)

held out for validation, an optional range of (N� 1) potential
cross-validation segments will be available for the data analyst,
the number of segments falling in the interval [2, 3, 4,. . ., (N� 1),
N]. Various ‘schools-of-thought’ of cross-validation have devel-
oped over history, within chemometrics and elsewhere, some
favoring ‘full cross-validation’ (one object per segment; N
segments in total—LOO), some defining 10 segments as the
canonical number and others favoring similar schemes each with
its own preference (e.g. 3, 4, or 5 segments)—whereas a small,
but steadily growing minority see more complexity in this issue
than a more-or-less voluntary selection from the space of (N� 1)
optional variants of segmented cross-validation.
There always exists this range of (N-1) potential cross-validation

variants for any given data set with N samples, but no set of
principles for objective determination of the optimal number of
segments has ever been offered. Esbensen [23] offered a first
foray only; the issue is complex.

6.2. Phenomenology of cross-validation versus test set
validation

Usually there is more focus on strict adherence to one or other
fixed cross-validation procedure, complete with preferred number
of segments (scheme), than openness with respect to what
exactly are the precise assumptions and prerequisites behind
cross-validation. This is troublesome, as no amount of pro et con
discussion of specific numbers of segment will reveal the
underlying structural problems associated with all types of
cross-validation.
Against this backdrop Esbensen [21] analyzed the operative

aspects of cross-validation versus test set validation, further
corroborated and more powerfully illustrated by Esbensen and
Lied [22]. The general conclusion arrived at here, in parallel with
similar insights found sparingly across the validation literature, is
that cross-validation is aimed at performing as a particularly
effective simulation of test set validation. However, while for a
superficial comparison cross-validation performs in a similar
fashion to test set validation, there is one critical dissimilarity:
there is only one data set involved in cross-validation, Xtrain.
This is aggravated by the fact that any modification always

concerns a reduction of its size, i.e. some local modeling being
based on a subset of N objects only. Any of the local models used
for estimation of the number of components to be included in
the regression model and/or to estimate RMSEP will manifestly
be based on a voluntarily reduced data set of an undisputedly
smaller number of objects than N. This constitutes a massive
contradiction however. As soon as the training set has been
defined by the data analyst, this means that all the objects herein
www.interscience.wiley.com/journal/cem Copyright � 201
are needed for its purported representativeness. None of the
objects in a properly defined training data set are therefore
available for the kind of voluntary exclusion demanded in
cross-validation. It is only fair that once the data analyst (or the
informed data supplier) has made the utmost efforts involved in
securing an absolutely optimal training data set, this particular set
configuration must remain unmodified (re. the number of
objects, their spanning ranges, their ‘representativity’ . . .)—or
else all credibility to the training set definition is lost. After the
training data set has been codified into the necessary protocol,
there can be no change.

6.3. Two worlds of sampling understanding

It is necessary to distinguish clearly between the process of
statistically drawing from a population of i.i.d. objects (this
process is here termed samplingSTAT) and physical sampling, i.e.
materializing N individual ‘samples’ (objects in data analysis
parlance) from a heterogeneous system (a lot) (this process is
here termed samplingTOS) in order to eliminate any possibility of
confusing one sampling process with another. The critically
important distinction is that while samplingSTAT assumes selection
of N objects from a population of otherwise similar objects (all
objects are similar in all aspects than w.r.t. the analyte),
samplingTOS is addressing a significantly heterogeneous target
by a selection process. The first situation corresponds with the
occurrence of the type of sampling bias, which conventionally
can be subjected to the statistical bias correction. In the latter,
fully TOS-error influenced situation, the sampling bias is always
varying (inconstant), and very nearly never small enough to
neglect, rather to the contrary. A complementary distinction: a
(statistical) sample is a subset of a population: sampleSTAT, while a
sampleTOS refers to one individual physical subpart of lot material,
with a specific mass (massSAMPLE), which is the result of a specific
sampling process (samplingTOS). TOS focuses on how to obtain a
‘representative sample’ (sampleTOS), as opposed to non-
representative ‘specimens’. All essential definitions and relation-
ships in TOS are given in the published literature [1–23];
Appendix A summarizes a minimum background to all claims
regarding TOS in the present context.

6.4. Proper validation—the role of the sampling bias
(present vs. future)

The above discussion illustrates the fundamental distinction
between the statistical and the TOS data quality contexts.
Without full and unambiguous understanding of these differ-
ences, unnecessary confusion and heated discussions without
any possibility of ever reaching a common ground will only
continue. Lot and material heterogeneity and the way it is
conceptualized and quantified constitutes the singular key to
understanding the differences between samplingSTAT and sam-
plingTOS. A recent overview in summary form of TOS in relation to
sampling, chemometric data analysis and validation can be found
in Reference [23]; process sampling in the PAT regimen was
analyzed in Reference [20]. The full argumentation for claiming, as
we do in this work, that one cannot understand validation in the
conventional i.i.d. statistical context only is presented here. No
matter how offensive this may appear at first sight, what is meant
is only that a sufficient TOS heterogeneity understanding is also
needed.
0 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 168–187
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Validation using only one data set must be appreciated based
on the key issues pertaining to the TSE: any N-object data set
constitutes a specific realization of an N-tuple of individual TSE
materializations. Cross-validation precludes any other possibility
than this singular manifestation on the ensemble of the N objects
in the training set. By voluntarily having access to one data set only
(one set of objects drawn from the population in the statistical
parlance) cross-validation simply never includes the possibility of
incorporating empirical information as to the future prediction
situation and the specific data structure reigning here (whichmay
or may not be different, one will never know). Instead, various
declarations of faith in the assumption that all training data sets are
always representative of the future application situations have
been offered both in many different versions in the literature and
in other contemporary discussion fora. These claims are, however,
invalidated by their own limited scope, as they are invariably
dressed up in the framework of a statistical population only.
The key argumentation in the present work revolves around

sufficient understanding of the complexities incurred by TOS to
this complacent view. Standing on the statistical context only, the
data analyst is conveniently relieved of all responsibility with
respect to the representativity of any-and-all future data sets. It is
this claimed universality which strikes a completely wrong
tenor—it is simply untrue in the light of TOS and its extensive
experience.
The central issue is then that cross-validation sub-models

only reduces the calibration or validation basis of Xtrain. It is
off-handedly assumed that any-and-all of these sub-models used
for estimating both ropt and RMSEP can further reliable
information of how the model will also perform on future data
sets (test set, application data sets . . .). This tacit assumption
stands in stark contrast to the necessity to relate validation to the
real future prediction situation. For cross-validation there rests an
enormous burden of proof in this context. It is fair to say that
within chemometrics no cross-validation school has presented
anything akin to proof of how this voluntary reduction of the
singular training data set may relate to prediction performance in
the future. This procedural tradition simply has no rational
foundation.
The future prediction situation will have to be characterized by

at least one new data set Xnew. The central issue here is that all
new data set will be associated with a new realization of the
ensemble TSE manifestations, which is never identical with that
for Xtrain; all new data sets will per force encompass a new set of
TOS-sampled objects, each with a new individual TSE manifes-
tation.
The main lesson from TOS’ more than 50 years of practical

experience is that there is no such thing as a constant sampling
bias—the sampling bias changes with every new sampling from
heterogeneous materials. For heterogeneous lots, there exists no
possibility for the kind of bias-correction offered in statistics,
as this is based on a faulty over-simplified bias constancy
assumption. Real world heterogeneity is much more complex
than the statistical model of a population of i.i.d. objects, with a
very few non-consequential exceptions (infinitely diluted
solutions, and similar systems, which do not allow any
generalization). This key insight is furnished by even a
rudimentary understanding of the phenomenon of heterogen-
eity, DHL, distributional heterogeneity and CHL, compositional
heterogeneity. No manner of statistical modeling of instrument/
signal error propagation will even begin to model the material
heterogeneity which leads to TSE in the range of
J. Chemometrics 2010; 24: 168–187 Copyright � 2010 John Wil
10–50–100� the TAE, Appendix A. These are facts which are
fundamental and irreducible characteristics behind all (X,Y) data
spaces. The data analyst viewpoint is not broad enough to deal
with the complete heterogeneity, sampling, analysis, data
analysis context.
If each individual samplesTOS contribute in a varying, uncontrol-

lable degree to the overall ensemble bias, it follows that the
resulting data structure will be different for each new ensemble of
N objects—specifically this means that each-and-any future
sampleSTAT, a test set, by necessity must be different from the
training set; it is only a matter of to which degree different. It
follows that there can never be any guarantee that the specific
training set realization will necessarily also be representative of all
future data sets—even if each ensemble repeats the samenumber
of N individual TSE materializations. This is the crucial distinction
between physical TOS sampling and statistical sub-setting
sampling upon which the present argumentation rests.
It also follows that bias is a function of the specific

heterogeneity expressed by the lot material and form, as well
as of the specific sampling process employed. In fact TOS
specifies no less than three types of bias-generating errors
stemming from the sampling process itself, which manifest
themselves if not specifically eliminated; this fact constitutes a
most serious reason to be informed and reasonably conversant
regarding TOS in practice. In addition, the ensemble bias will
change its nature and magnitude also as a function of which and
how many objects be included in the training and the test set(s).
Therefore, it is mandatory to test all implicit or explicit

assumptions regarding sampling bias constancy. As it happens
this is not difficult, nor is it associated with prohibitive outlays in
terms of work, resources or economy—in fact this can actually be
done ‘free of charge’ in practice every time a prediction model is
to be used for its designated purpose—by the simple procedure
of test set validation option. All predictions are here always based
on a new data set, that is, a new ensemble of TOS-sampled
objects (N objects). Therefore, sampling will per force have been
involved at the very least a second time (or more) in exactly the
same fashion as for the training data set. However, all XNEW data
sets constitute a completely new, independent sampleSTAT,
containing a valid representation of the relevant ‘heterogeneity
information’ pertaining to the future use.
With the help of the relationships shown in Figure 4 it is

possible to delineate the universal deficiency displayed by all
types of segmented cross-validation (compared with leverage-
corrected validation as well): Test set validation will always result
in the highest estimate for RMSEP than any of the segmented
cross-validation alternatives (and often very much higher than
the leverage-corrected RMSE estimate)—indeed the most
realistic estimate.
Figure 4 summarizes an extensive accumulated experience

with validation of many hundreds of data sets, representing all
types of data structure depicted in Figure 1, especially all those of
more regular appearance, types (a)–(d). This systematic under-
standing is communicated by many professional data analysts as
well. In our own decades of chemometric experiences (teaching,
professional, consulting), innumerable data analyses have also
led to similar results based on very many, diverse data structure
types. Obviously at times there may also exist partly deviating
curves to the ones depicted, but these are invariably always
related to just more irregular data structures.
The ‘gap’ illustrated with a vertical arrow represents the

missing second TSE-component which can only be quantified by
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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comparing the test set and the cross-validation results (in
whatever guise). This can be said to constitute the ‘missing link’
w.r.t. the MSE estimate in re-sampling/cross-validation. This is the
quantitative measure of the missing TOS-error component which
can only be incorporated by incorporating a second data set.
From this insight, one can conclude that most types of variants of
either re-sampling types in general, or the internal cross-
validation type in particular, by necessity are inferior with respect
to their own purported objectives, precisely because the
dominating TSE contributions from the virtual set of all possible
future data sets are never involved. It follows that cross-validation
should logically and scientifically be discontinued. Only test set
validation can stand up to the logical demands of all the
characteristics of proper validation. One should henceforward
observe a test set imperative.
Based on the above discussion it is possible to comprehend the

following analysis of an often presented ‘combined approach’
which is characterized by external splitting of a test set (from the
master training set) combined with internal cross-validation. A
recent paper by Filzmoser et al. [67] presents the hitherto most
evolved version of this approach in a comprehensive systematic
framework of intensive repetitions of both internal and external
loops (termed ‘repeated double cross validation’). The common
feature of this and various closely similar proposals is that the
master training data set is subjected to a barrage of repeated
internal and external splitting and re-samplings from which, it is
claimed, it is possible to obtain superior validation results
(sometimes based upon evaluation by conventional statistical
methods, e.g. aopt frequency distributions, residual histograms).
There are minor variations as to the exact degree to which new
sub-model fitting process takes place at all or selected levels
and repetitions, but this is all unfortunately a moot point:
No manner of advanced repetition of model optimizations
(wheels-within-wheels) based on cross-validation, the funda-
mentals of the present critique stands. These approaches
represent a powerful school-of-thought within current chemo-
metrics, a tradition which is adamantly insisting on a two-step
framework: internal estimation of model complexity first
(universally this is carried out by cross-validation), followed by
external ‘test set’ or ‘validation set’ estimation of the resulting
RMSEP. While this latter is associated with a correct insistence that
external test set validationmust be fully independent frommodel
optimization (there is a very clear demand that no objects must
have been involved in both calibration and validation), sadly this
is often just lip service to the test set imperative, since the point of
origin is splitting from themaster training set—indeed all objects
ultimately originate from the one-and-only training data set.
While much original thought has gone into these procedures and
principles, as long as they are not based upon full understanding
of the salient reasons why -, and the principles behind the test set
imperative (PPV), these approaches fall from the exact same
critique and reasons as their simpler counterparts which were all
shown to be inadequate above. In fairness, some proponents
within this two-step consensus actually insist of proper test sets
in the present form—alas also insisting that internal cross-
validation is the proper procedure for model optimization, for
which reason these are equally at fault in the final evaluation. The
crucial issue, exceedingly difficult to abandon, is the inability to
comprehend the inherent inferior specification of model
optimality if based on one data set only. Interestingly phrases
like: ‘within the population of the data used’, ‘although calibration
set and test set have been selected randomly, the resulting SEPTEST
www.interscience.wiley.com/journal/cem Copyright � 201
values could be (just by chance) too optimistic or too pessimistic,
depending on how representative this separation was’ and
‘assuming that all new samples are from the same data population
as the samples used for model creation . . .’ [67] [emphasis by
present authors] clearly reveal that use of terms and issues like
chance, population, representativity cannot be used at large but
must be based on appropriate understanding of the TOS and its
intimate impact on all central validation issues, delineated in full
in Appendix A.

6.5. Disclaimer on universalities

Above it was argued as if there always, without exception, will be
significant TOS errors present, leading to the demonstrated
‘extra-statistical sampling variances’. The present authors fully
acknowledge, however, that there be situations in which the
samplingTOS-errors can be demonstrated to be of only insignif-
icant magnitude(s). To the degree that some cases of this nature
do exist, if/when/where appropriately demonstrated, the present
TOS-augmentation can safely be disregarded—but the burden of
proof-of-existence must lie with the too glib contrary general
representativity assumptions. It is comforting that all test set
validations can be directly compared with any particular
re-sampling preference as well (e.g. it is always possible also
to perform a cross-validation on Xtrain). The opposite case is
universally impossible, and the shortcomings stemming from a
re-sampling procedure only are dramatically well illustrated by
Figure 4.
QSAR/QSAP contexts may often constitute a fundamentally

different situation than what has been delineated above. The
objects in question here are typically molecules etc.—in this
context there is often no FSE or GSE (nor ISE), i.e. there are no
‘measurement errors’ as regards the definition of the objects in
the X-space. Often also, the data sets involved are by nature
representatives of the ‘small sample case’ (i.e. a small number of
objects). As regards X-variables, however, there may, or may not,
still be measurement errors involved depending upon whether
quantum chemistry calculations or direct measurements are
involved in descriptor quantifications, while Y-values (activities,
functional properties) clearly are not exempt from the present
context. In order not to create confusion and futile debate, the
present authors have no desire to declare blanket inclusion of
QSAR/QSAP in the present call for a test set imperative; here
would indeed appear to be good reasons to claim special
circumstances which merit application of careful and reflected
use of cross-validation [62,68,74].

6.6. Remark on several test sets

With the above very few, quite specific exceptions, the test set
concept is universally the most realistic prediction validation
possible. This is so because all relevant errors components are
guaranteed to be included: all X-errors are incorporated in XNEW in
fully realistic fashion, as are all Y-errors, samplingTOS as well as
samplingSTAT. We may trust this to be the optimal validation
approach because all future use of the prediction model
necessarily will involve identical conditions for similar new
sampling and analysis.
Arguments can easily be raised for invoking a postulated need

for several test sets: Of course more than one test set will always
allow for more valid assessment, since more test set realizations
correspond to more examples of the future in-work prediction
0 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 168–187
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scenario for the prediction model etc. However, here we see no
special need to make matters more difficult by going to this
extreme. One properly materialized test set will suffice to
incorporate the principal information from the future situation as
best possible given the dominating objections and postulated
budget or effort constraints, which is often claimed not even to
allow for one test set. In a rational context, it is evident that a
decision regarding the real need for several test sets will be based
much more on specific problem-dependent characteristics,
always related to the specific data background at hand.
7. CONCLUSIONS

Re-sampling and cross-validation approaches to validation work
on one data set only, Xtrain. This scenario was analyzed in detail.
The tradition of cross-validation is particularly strong; its current
use is mainly based on unsubstantiated assumptions of the
training set always being fully representative of the population,
indeed for all types of data sets, also those pertaining to ‘future’
use—in splendid disregard of their extremely varying origins
and varying data structures. This widespread tacit assumption
was shown to be untenable in the light of the significant
bias-generating sampling errors described in the TOS. It is
critically necessary to be able to competently identify and
eliminate all the so-called Incorrect Sampling Errors (ISE).
Instead of an almost endless series of partial exemplifications

(based on particular date set structures) presented in the literature,
and fromwhich no valid generalization can ever bemade, we have
alternatively established first principles regarding validation. The
PPV were outlined based on a set of key distinctions:
(i) V
J. Ch
alidation cannot be understood by focusing on the
methods (schemes) of validation only; proper validation must
be based on full knowledge of the underlying definitions,
objectives, methods, effects and consequences.
(ii) A
nalysis of common validation objectives implies that there
is only one valid paradigm, formulated as the test set
validation imperative.
(iii) C
ontrary to much contemporary chemometrics validation
practice and myths, cross-validation is shown to be unjusti-
fied in its current form of monolithic application of one
principal type of procedure (segmented cross-validation)
on any-and-all data sets. Within its scope and design, cross-
validation is shown as but a sub-optimal simulation of test set
validation only, crippled by a critical sampling variance
omission, because it is based on only one data set, the
training data set.
1

Many re-sampling validation methods were shown to suffer
from the same deficiencies.
The PPV are simple and universal and can be applied to all

situations in which assessment of performance is desired—be
this prediction-, classification-, time series forecasting-, modeling
validation a.o. The new element in PPV is the TOS, which is
needed in order to be able to identify and eliminate all
bias-generating sampling errors (incorrect sampling errors)
which are responsible for unnecessary, inflated heterogenei-
ty-induced measurement variances, and for which there are no
statistical corrections possible. Invoking the complete body of
theoretical and practical experiences from over 50 years’ of
application the TOS, it was shown to be untenable to continue
with bland, unjustified assumptions regarding representativity. A
emometrics 2010; 24: 168–187 Copyright � 2010 John Wil
salient brief, Appendix A, supported by a full set of references,
argued how the TOS is able to describe, correct and reduce to a
priori acceptable levels for all kinds of material or lot
heterogeneity errors as well as eliminate those errors originating
from the sampling process itself. Sampling variance, in the form
of both samplingTOS and sampling STAT is the result of a much
more complex interaction between a specific sampling process
and the material heterogeneity in question, than what is
contained in the traditional statistical population concept alone.
On this basis it was concluded that re-sampling and cross-
validation approaches miss out critically with respect to the
crucial samplingTOS variance, which can only be accommodated
by a test set (a second independent sampling—more than one if
so desired locally, but this is not a universal demand), without
which re-sampling validation will universally underestimate the
realistic prediction error. There is no theoretical way to derive any
approach that can estimate the magnitude of this missing part.
For this reason, re-sampling and cross-validation should logically
be terminated or only used in practice with full disclosure of the
critical deficiencies outlined. QSAR/QSAP constitutes a special
case, in which informed use of cross-validation may be well
merited, especially in the ‘small sample case’, although in the final
evaluation, a test set will still always reign superior.
Regarding the main chemometrics method PLS-regression, a

call was made for commitment to test set validation based on
graphical inspection of T–U plots for optimal understanding of
the operative X–Y interrelationships. Simple visual inspection will
also allow a reliable premonition of the outcome of any particular
validation approach, especially if based on the complete
sampling variance understanding (samplingstat and samplingTOS).
There is no justification continuing to reject the work effort
involved in securing a test set for validation purposes, acknowl-
edging that this is the only approach which eliminates the
deficiencies outlined. The comparatively rare occasions when a
test set is manifestly not an option (historical data a.o.) have
absolutely no generalization power—and the comprehensive
understanding delineated here will stand the data analyst in
good stead also when forced to perform some form of
re-sampling or other. Full disclosure of the structural MSE
underestimation deficiency is mandatory in all cases.
Many reasons are given in scores of traditional arguments for

continued use of cross-validation and re-sampling for validation.
Our critique against can be summarized:
� C
ey
omplacency: one approach/method for all data sets, disre-
garding vastly different data correlation structures
� F
ocus on algorithms, implementation and software, without
critical thinking
� U
nwillingness to investigate consequences of traditional stat-
istical population assumptions
� R
esistance against the TOS for complementary understanding
re. heterogeneity and sampling process issues
� C
onfusion regarding fundamental (hard) versus soft data
models
� A
dmiration of mathematics and no interest in how ‘data’
originate (TOS)
� B
lind adherence to traditions or schools of thought: ‘This is
the way chemometrics has been doing validation for close to
40 years . . .’
� T
wo-step approaches involving cross-validation cannot be
justified however personably cloaked in a priori or a posteori
statistical re-sampling procedures.
& Sons, Ltd. www.interscience.wiley.com/journal/cem
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APPENDIX A

Summary of the Theory of Sampling (TOS) [1–23]
1

A.1. Introduction

Naturally occurring materials in science, technology and industry
(including materials being processed in the analytical laboratory)
are heterogeneous at all operative scales related to sampling.
J. Chemometrics 2010; 24: 168–187 Copyright � 2010 John Wil
Therefore sampling cannot be satisfactorily carried out in
practice, without a working understanding of the phenomenon
of heterogeneity and how heterogeneity can be counteracted
in the sampling process. All sampling process interacts with
the heterogeneous material making up a lot. Because of this,
sampling is far from trivial as all sampling procedures
unavoidably will be affected by the heterogeneity of the lot
material at all scales larger than the operative sampling tool. In
addition, the sampling process creates sampling errors of its own,
due to non-compliance with the practical, mechanical, mainten-
ance and operative procedural tenets of TOS. For stationary lots
this generates five principal types of sampling errors (in this paper
process sampling is not covered, full details are found elsewhere
[20,22]). The five stationary sampling errors suffice for full
understanding of the principles of TOS.
The objective of representative sampling is directed at

analyzing the conditions under which it is guaranteed that a
reliable sample with an analyte concentration, aS, sufficiently
close to the true average lot concentration, aL can be obtained.
TOS shows that all such conditions rests with the sampling
process; it is not possible to ascertain whether a specific ‘sample’
is representative or not from inspection of the sample itself.
A minimum understanding of TOS includes: heterogeneity, five

sampling errors, the Fundamental Sampling Principle, lot
dimensionality, proper methods for mass reduction, sampling
correctness, seven Sampling Unit Operations (SUO) and the
replication experiment.
A.2. Heterogeneity

Heterogeneity of stationary lots and materials has two funda-
mental aspects: Constitutional Heterogeneity (CH) and Distribu-
tional Heterogeneity (DH).
The constitutional heterogeneity represents the heterogeneity

dependent on the physical or chemical differences between
individual lot units, which TOS terms ‘fragments’; ‘grains’ is a
useful imaginary metaphor for ‘fragments’ e.g. mineral grains,
seed grains, kernels, biological cells. Any given target to be
sampled (characterized by lot geometry, material type and - state,
grain-size distribution etc.) exhibits a CH which is an inherent
property of the lot. Thus CH plays out its role at the inter-grain
scale of any lot. CH can only be reduced by altering the physical
state of the material.
The distributional heterogeneity complements this character-

ization by describing all aspects of heterogeneity dependent
upon the spatial distribution in the lot, as gauged by the operative
sample size (volume/mass) used. This sampling unit can
conveniently be imagined as the proverbial sampling scoop.
The physical manifestations of DH are stratification, segregation
and/or local groups-of-fragments concentrations with a signifi-
cant higher, or lower, analyte concentration than the average lot
concentration, aL. DH can actively be reduced by using a suite of
‘correct’ sampling methods to be delineated further below. DH
can never be larger than CH (in a sense DH is a complicated
fraction of CH) and CH can never be strictly zero. Dependent on
the purpose and scale of sampling (scoop size), CH may be close
to negligible, but it is never nil. Homogeneity is defined as the
(theoretical) limiting case of zero heterogeneity. If a homo-
geneous material did actually exist, sampling would not be
needed—as all sampling errors would be zero, i.e. all ‘samples’
would be identical.
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A.3. Constitutional heterogeneity (CH)

TOS defines a heterogeneity contribution to the total lot
heterogeneity by firstly focusing on the individual fragments.
TOS characterizes all fragments according to the component of
interest (the analyte, A), described by the proportion (or grade), ai,
and the fragment mass, Mi. If a lot consists of NF individual
fragments with individual masses, Mi, with an average fragment
mass, Mi , with lot grade aL and a lot mass ML, the heterogeneity
contribution fromeach individual fragment, hi, can be calculated as:

hi ¼
ðai � aLÞ

aL
� Mi

Mi

¼ NF
ðai � aLÞ

aL
� Mi

ML

Heterogeneity contributions are dimensionless intensive units. hi
delineates both the compositional deviations of each fragment,
while also compensating for variation in the fragment masses;
larger fragments result in a larger influence on the total
heterogeneity than smaller ones. This viewpoint constitutes a
major distinction from ‘classical statistics’ where all population
units contribute equally (with equal statistical mass). hi constitutes
an appropriate compound measure of mass-weighed heterogen-
eity as contributed by each fragment in the lot.
The total constitutional heterogeneity of the lot, CHL, can

further easily be defined as the variance of the distribution of the
heterogeneity contributions of all fragments:

CHL ¼ s2ðhiÞ ¼
1

NF

X

i

h2i ¼NF

X

i

ðai � aLÞ2

a2L
�M

2
i

M2
L

A.4. Distributional heterogeneity (DH)

By ascending one scale level, from the scale of fragments to the
operative level of one sampling unit (sampling scoop), one is able to
cover the complementary realm of lot distributional heterogeneity,
DHL. No longer concerned with the lot consisting of the totality of
NF fragments, any lot can alternatively be considered as being
made up of a number of potential sampling volumes, NG,
commensurate with the operative volume of the sampling tool.
Other than this hierarchical operative scale difference, the focus is
identical, viz quantitative description of the differences in
composition (concentration) of the analyte, A, between these
sampling volumes (index n), an. DHL can be calculated via a strict
analog to the first definition of heterogeneity carried by a single
fragment. A group-of-fragments, group for short (index n), Gn,
similarly carries an amount, a contribution of the total lot
heterogeneity, hn, which can be calculated from the grade of
the group in question, an, the group mass, Mn, the average group
mass, Mn, and the average grade over all groups,an:

hn ¼ ðan � aLÞ
aL

�Mn

Mn

¼ NG
ðan � aLÞ

aL
� Mn

ML

The distributional heterogeneity for the entire lot can likewise be
calculated as the variance of all group heterogeneity contributions:

DHL ¼ s2ðhnÞ ¼
1

NG

X

n

h2n ¼NG

X

n

ðan � aLÞ2

a2L
�M

2
n

M2
L

Due to the fact that the aggregate sum of all (virtual) groups
constitutes the physical lot in its geometric entirety, it is clear that
DHL, in fact, is a measure of the spatial heterogeneity exhibited by
the lot.
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This two-scale understanding of the heterogeneity of
any lot (system,material)—fragments versus group-of-fragments—
constitutes a most effective theoretical concept in TOS with which
one is able to understand and deduce several important key issues
of representative sampling of heterogeneous materials. DHL

accounts for the material heterogeneity in a specifically relevant
form, namely that corresponding the specific sampling size (mass/
volume) used, MS. It is equally possible to ascertain the quantitative
effect of the lot heterogeneity interacting with alternative sampling
processes, for example using alternative sampling volumes.
TOS terms the fundamental sampling volume: the increment.

All increments may either be used as for making up a composite
sample, see further below, or it may be used as a single
increment sample, termed a grab sample. The most important
aspect of any sampling process is the size of the sampling unit
MS. From TOS, it is clear that a single-scoop sample is almost
never acceptable (results in unacceptably inflated sampling
bias, see further below), soMS is nearly always to be understood
as the compound mass of a composite sample, unless
specifically stated otherwise.
Unlike for CHL, which is an intrinsic characteristic of the given

material, DHL can actively be altered (reduced), especially by
choosing a smaller sampling tool thereby increasing the number of
increments in composite sampling (in process sampling this
means increasing the sampling frequency), and/or the lot can be
thoroughly mixed, blended etc. In large lots, forced mixing is often
impractical or impossible; in such cases increasing the number of
increments is the only option for reliable sampling. If there is a
significant segregation or grouping (fragment clustering) in the lot,
increasing the sample size, MS, only results in a comparatively
minor effect and will soon reach an impractical limit. By way of
contrast and effectiveness composite sampling is always a good
choice of action. TOS has much to say (all negative) regarding the
universal futility of grab sampling, which is never representative in
practice against all realistic heterogeneous lots andmaterials. Grab
sampling is never reliable and should accordingly be abolished.
It follows that sampling from a heterogeneous lot can never

result in identical analytical results; there will always be a sampling
variance (more accurately, a sampling_cum_analysis distribution)
as expressed by a set of analytical results. Even a set of identically
replicated samples (carried out following an identical protocol) will
give rise to a distinct, non-zero sampling variance (see section
below: replication experiment). This is solely due to the fact that no
sampling process can eliminate the effect of heterogeneity for any
lot—its role is to reduce this effect as much as possible, and to be
able to quantify the remaining sampling variance. It may happen
that particular systems may possess extraordinarily small hetero-
geneities etc. but no generalizations regarding universal relation-
ships re. ‘homogeneity’ or ‘sufficiently homogeneity’ etc. can be
drawn from such particulars. It is highly advisable always to treat
any lot material as if it carried a significant heterogeneity.
A.5. Sampling error versus practical sampling

Analysis of the phenomenon of heterogeneity [1–4,14] outlines
three factors which are responsible for the magnitude of the
distributional heterogeneity:

� CHL (constant for a given material)

� Grouping (depends on the size (volume/mass) of the extracted
increments)
0 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 168–187
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� Segregation (depends on the spatial distribution of fragments
in the lot)

Both segregation and grouping can be quantified if need be;
methods and equations are described in detail in the pertinent
literature (and further references herein). More important is how to
counteract the effects arising here from in practical sampling. In
order to extract samples from heterogeneous materials with
sufficiently low sampling variation it is necessary to minimize DHL.
For any given material state, the case of reducing the two
phenomenological factors grouping and segregation can princi-
pally be achieved in only two ways:

� Decreasing the size of the extracted increments, thereby
increasing the number of increments (or increasing the
sampling frequency) combined to form a given sample mass,
MS (this approach counteracts grouping and segregation on the
scale of the sampling tool volume).

� Mixing/‘homogenizing’ the lot (reduces macro-scale lot
segregation)

If these measures are insufficient for a given sampling process
and total error acceptance level, it will be necessary to reduce the
constitutional heterogeneity itself, which necessitates physical
reduction of the fragment sizes, comminution (grinding or
crushing), and/or increasing the total sample mass, MS. Comminu-
tion is by far the most effective of these two options, following:

varðFSEÞ ¼ C � d3=MS

in which C is a material constant (constant for a given grain-size
distribution state) and d is the top-diameter of the material
(termed d95) [1–14].
See further in Section Sampling Unit Operations.

A.6. Total Sampling Error (TSE)—
Fundamental Sampling Principle (FSP)

All analytical results are associated with an analytical uncertainty,
expressed as the variance of the TAE. Following analysis of the
entire sampling process, TOS aggregates all other sources of error
from sampling as the TSE. TAE and TSE together form the Global
Estimation Error (GEE).
Figure 1 Zero-dimensional sampling errors and their TOS

interrelationships.
TAE is often in good control in the laboratory, and is usually of

only little concern in comparison to sampling, as TAE is always
significantly smaller than the sum of all sampling errors, TSE. In
fact TSE is very often 20–50–100� larger than TAE [1–8].
Exceptions would reflect only very uniform materials with a
truly exceptional small heterogeneity—such are rare indeed.
TSE has many sources. The objective of representative

sampling is to identify, eliminate or reduce all contributing
sampling errors. While much of the sampling procedure and
sampling equipment issues and efforts are to some extent under
control of the sampler, the part from constitutional heterogeneity
is dependent on the material properties only. This error is termed
the Fundamental Sampling Error (FSE), as it cannot be altered for
any given system (lot, geometry, material, state, size distribution);
it is FSE which is reduced by crushing/comminution. On the other
hand, contributions from the spatial distribution of the material
are not fixed and can more easily be altered. This is dependent
J. Chemometrics 2010; 24: 168–187 Copyright � 2010 John Wil
not only on the material characteristics itself (DHL) but also on the
sampling procedure and whether which counteraction measures
are invoked (if for example mixing can be applied before
sampling). The variation stemming from distribution heterogen-
eity is represented by the Grouping and Segregation Error (GSE).
All possible extractions from the lot (all possible virtual

increments) must have the same probability of being selected, of
being materialized. This critical stipulation is called the Funda-
mental Sampling Principle (FSP). FSP must never be compromised
otherwise all possibilities of documenting accuracy (unbiased-
ness) of the sampling process are abandoned. FSP implies
physical access to all geometrical units of the lot. TOS contains a
wealth of practical guidelines of how to achieve compliance with
FSP [1–16].
TOS employs a strict terminology, in which all aspects of

non-compliant sampling can be specifically named. Thus, TOS
specifies as ‘correct’ only those features that will contribute
towards the ultimate goal of being able to demonstrate
representativeness of the particular sampling process employed.
To which further: The sum of FSE and GSE is termed the ‘Correct
Sampling Errors’ (CSE), as they are not due to erroneous sampling
or wrong procedures; in fact CSE always occur to some degree,
even when the sampling procedure is ‘correct’ (meaning
accurate), hence their somewhat peculiar name. Errors that are
connected to erroneous sampling procedures are contrarily
summed as the Incorrect Sampling Errors (ISE).
ISE comprise four parts, one stemming from not delineating

correct increments from the lot, the second from not extracting
exactly what was delineated and a third form of error is induced
after the extraction of the increment (or sample).
The Increment Delineation Error (IDE) can be avoided by always

selecting (delineating) an increment that completely covers the
relevant dimensions of the lot, for instance a complete cross-
sectional slice if the lot is a (very) long pile of material, or a ‘drill
core’ to the very bottom of the layer(s) of interest if the lot is a
three-dimensional volume or of a similar shape. The Increment
Extraction Error (IEE) arises when particles inside the delineated
increment do not end up in the sample, for instance by bouncing
off the increment tool edges—or by being blown away as dust, or
if particles outside the delineated increment find their way into the
sampling tool, contamination. The usual dictum is that only
ey & Sons, Ltd. www.interscience.wiley.com/journal/cem
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particles or fragments with their center of gravity inside a
delineated increment should become part of the increment
actually being extracted. TOS contains very detailed descriptions of
all ISE and ditto recipes for their elimination.
The third incorrect error arises when the sample is altered after

extraction, for instance by absorbing moisture, by spillage,
cross-contamination or similar. Sample tampering and downright
fraud is also a type of ‘error’ which is likewise collected under the
term Incorrect Preparation Error (IPE). There is also another, a
fourth ISE, the Incorrect Weighting Error (IWE), which sometimes
plays a role too, but mostly concerning process sampling; IWE is
not treated here.
All the incorrect errors can be minimized, in fact all can always

be completely eliminated. This is the definition of ‘correct’
sampling: There are many practical, mechanical aspects of this
issue, all relatively simple, almost trivial to implement, but only if
they are properly recognized and one is willing to invest the work
necessary. There are usually no cheap ‘fixes’ to a non-
representative sampling procedure, but modification to a correct
counterpart is neither an expensive approach, but mostly has to
do with realizing and accepting often minor changes in
procedures only. The TOS literature deals a great length with
all these issues, with various types of focus on explaining the
connection between the individual errors and how they can be
minimized completely. The selected literature list in the text is
comprehensive [1–23], and further references can be found in
abundance here.
A.7. Seven Sampling Unit Operations

A set of simple Sampling Unit Operations (SUOs) has been
formulated, which constitute a complete set of procedures and
general principles regarding practical sampling [14].
These unit operations can be grouped according to their use:
Three general principles: normally utilized only once in

planning or optimization of new or existing sampling procedures:

� Transformation of lot dimensionality (transforming ‘difficult to
sample’ 2D and 3D lots to ‘easy to sample’ 1D lots). It is always
possible to acquire some form of specimen from 3D and 2D
lots, but whether this is based on probabilistic, correct,
unbiased methods is a much more difficult issue—estimates
of the primary sampling errors are difficult, sometimes
impossible to come by, as are useful estimates of lot
heterogeneity and composition aL.

� Characterization of 0D sampling variation by a replication
experiment

� Characterization of 1D (process) variation by variography
[20,23]

Four practical procedures: often used several times over during
practical sampling:

� Lot or sample homogenization by mixing or blending

� Composite sampling, using the smallest possible increments

� Particle size reduction (comminution)

� Representative mass reduction [6]

As but two examples of the use of SUO: If the Fundamental
Sampling Principle appears difficult to uphold (for example for
large stationary lots) Sampling Unit Operation #1 must be
www.interscience.wiley.com/journal/cem Copyright � 201
invoked [Lot Dimensionality Transformation]. In this fashion all
‘impossible-to-sample’ lots (includes also 2D, 3D lots) can in fact
very often be transformed into a 1D lot configuration, by far the
easiest configuration for representative sampling.
All primary sampling must employ composite sampling (SUO #

5), unless it has been specifically proven that acceptable sampling
quality can be otherwise achieved based upon single increments
e.g. using CVrel (see immediately below).
The theory pertaining to the individual SUOs is explained in full

in the TOS literature.
A.8. Replication experiment—quantitative
sampling variance

The quantitative effect of DHL interacting with a particular
sampling process (i.e. a sampling process using a specific
sample mass in a specific sampling plan (grab sampling,
composite sampling, other . . .) can be quantified by extracting
and analyzing a number of replicate samples ‘covering the
entire geometry of the lot’ and calculating the resulting
empirical variance of the analytical results aS. Often a
relatively small number of primary samples will suffice,
though never less than 10. This procedure is termed a
replication experiment.
The replication experiment must be governed by a

fixed protocol that specifies how the sampling and
analysis methods are to be repeated. It is essential that
both primary sampling and all sub-sampling and mass-
reduction stages, sample preparation etc. are replicated in
an identical fashion. It is a critical requirement that all
Incorrect Sampling Errors (ICS) have been eliminated, i.e.
that only correct sampling is employed. This principle is called
TOS’ preventive paradigm.
It is possible to employ a standard statistic to this type of

replication experiment. The relative coefficient of variation, CVrel
is a very useful measure of the magnitude of the standard
deviation (STD) in relation to the average (Xavr), often
advantageously expressed as a simple percentage:

CVrel ¼ ½ðSTDÞ=Xavr� � 100

This in toto sampling variance is specifically influenced by the
specific heterogeneity of thematerial as expressed by the current
sampling procedure. When it is observed that all sampling errors
(TSE), primary sampling error, secondary, tertiary, etc. including
all errors incurred by mass reduction [6]—it transpires that CVrel
is a particularly apt summary characterization of the GEE. It
is very convenient to use CVrel for initial characterization of
an existing sampling procedure—as well as to compare the
numerical %-age resulting from modified, hopefully improved
procedures.
Currently international efforts are aimed at formulating

the world’s first so-called ‘horizontal sampling standard’
(matrix-independent). This work has a.o. also focused on
developing a rationale for specification of an authoritative
threshold level for CVrel as a practical maximum acceptable
sampling variance for significantly heterogeneous materials
and systems. A level corresponding to 35% has been
suggested preliminarily based on extensive practical experi-
ence [76]. While applying well to all such systems, this
quantitative threshold level is not to be viewed as a universal
excuse to let go of individual responsibility however. It is
0 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 168–187
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important to acknowledge that for many systems in which the
heterogeneity is substantially less (so-called uniform systems),
the CVrel threshold should be set as low as 15–20%, which
is the level at which the sampling process takes on the
characteristics of a Poisson process [77].
The only way to perform documentable and reliable

representative sampling is by adhering to TOS’ preventive
paradigm:

(1) Elimination of all Incorrect Sampling Errors (eliminate IDE, IEE,
IDE, IWE)

(2) Reduction of the remaining sampling variance (reduce
FSEþGSE)
J. Chemometrics 2010; 24: 168–187 Copyright � 2010 John Wil
Failure to comply with stipulation 1 guarantees development
of an inconstant sampling biasTOS, which is impossible to
estimate and therefore also impossible to correct for. History and
the literature is ripe with examples of unawareness of TOS,
sampling bias and the unavoidable consequences hereof, which
range from important-to-substantial economic loss, to worse . . .,
to fatal . . ..
Lack of proper attention to stipulation 2 is tantamount to

missing out on due diligence. Whether in science, technology
and industry it is not enough to address only the TAE. The
overwhelming measurement uncertainty issues always lie with
ill-informed, improper, non-representative sampling. This has the
above direct bearing on the issues of proper validation as well.
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