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There has been an extensive abuse of Gy's Formula during the entire history of applied TOS (Theory of
Sampling), it being applied too liberally to almost any aggregate material conceivable for many material
classes of extremely different compositions with significant (to large, or extreme) fragment size distri-
bution heterogeneity, for example many types of municipal and industrial waste materials. This abuse
regimen is for the most part characterized by lack of fundamental TOS competence and the historical
context of Gy's formula. The present paper addresses important theoretical details of TOS, which become
important as sampling rates increase at the conclusion of the full ‘lot-to-analysis sampling pathway
regarding finer details behind TOS’ central equations linking sampling conditions to material hetero-
geneity characteristics allowing the estimation of Total Sampling Error (TSE) manifestations. We derive a
new, complementary understanding of the two conceptual factors, y the grouping factor and, z, the
segregation factor, intended to represent the local (increment scale) and long-range (increment to lot-
scale) heterogeneity aspects of lot materials, respectively. We contrast the standard TOS expos�e with
the new formulation. While the phenomenological meaning and content of the new proposed factors (y
and z) remains the same, their numerical values and bracketing limits are different with z now
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representing more realistic effects of liberation and segregation combined. This new formulation makes
it easier to get a first comprehensive grasp of TOS0 dealings with sampling of significantly heterogeneous
materials. We believe this may present a slightly easier path into the core issues in TOS when sampling
and sub-sampling gets closer to the final aliquot scale.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Summary of earlier studies

Theory of Sampling (TOS) distinguishes two classes of sampling
errors, termed incorrect and correct sampling errors respectively.
Incorrect sampling errors (ISE) arise from wrongly designed sam-
pling equipment or inferior sampling procedures which all can be
significantly reduced and/or eliminated in practice, however,
although informed and diligent work is often needed. The
remaining correct sampling errors (FSE, GSE) arise from the inter-
action between a particular sampling procedure and specific the
heterogeneity of the target material when the sampling process is
correctly designed and operated following all of TOS0 pertinent
rules. In an extensive study Minkkinen & Esbensen [1] investigated
the influence of five factors that dominate the sampling variance in
this case: two factors relate to material heterogeneity (analyte
concentration and compositional heterogeneity/distributional
heterogeneity) and three factors that relate to the sampling process
itself (sample type, sample size, sampling modus). Significantly,
heterogeneous materials are well represented by the two first
factors, while all practical sampling process characteristics can be
understood as combinations of the latter three. Extensive in silico
simulations were presented based on an experimental design that
varied all five factors systematically. A wide array of repeated
simulated sampling campaigns was run and the results were
expressed as illustrations showing the pertinent effects as lot mean
estimates and the associated Root Mean Squared Errors (RMSE),
covering a range of typical combinations of materials' heteroge-
neity and often used sampling procedures as applied in science,
technology and industry. Factors, levels and interactions were
varied within limits selected to match realistic materials and sam-
pling situations that represent important cases, e.g., sampling for
genetically modified organisms; sampling of geological drill cores;
sampling during off-loading 3-dimensional lots (shiploads, railroad
cars, truckloads etc.) and scenarios representing a range of indus-
trial manufacturing and production processes. A simulation facility
“SIMSAMP” (MATLAB) was presented, with comprehensive results
designed to show also a wider applicability potential. The study
concentrated on estimating the effects of these heterogeneity types
on the “correct sampling errors”, aimed at being valid for all types
of materials in which non-bias sampling can be achieved.
1.2. Scope of present paper

The present paper addresses some important issues of hetero-
geneity, notably a re-evaluation of the theoretical derivations
behind TOS0 equations linking sampling conditions to the inherent
material heterogeneity characteristics, allowing the estimation of
Total Sampling Error (TSE) manifestations. In this context we derive
a new, complementary understanding of the two conceptual fac-
tors in TOS, Y the grouping factor and, Z, the segregation factor, (y and
z with new definition) intended to represent the two most
important processes responsible for the local, and the long-range
heterogeneity aspects of lot materials. In this development, new
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insights into certain finer details of Pierre Gy's [2e4] original
theoretical derivations come to light. We contrast the standard TOS
expos�e with the new formulation. The boundary conditions for the
present foray is that the phenomenological meaning and content of
both the Y and Z factors remains the same, but their numerical
values and bracketing limits are now different. We submit that the
new formulation makes it easier to get a first comprehensive grasp
of TOS0 dealings with sampling of significantly heterogeneous
materials, especially as sampling rates increase at the conclusion of
the full ‘lot-to-analysis sampling pathway. The new understandings
presented here apply when sample masses approach ~2e10% of the
penultimate sub-sample masses in the terminal stages of the full
lot-to-aliquot pathway, e.g. as when a spatula is used for delivering
the final analytical aliquot mass, or similar in the process sampling
and PAT domains.
2. TOS e a brief

2.1. Homogeneity e heterogeneity e sampling errors

Perfect homogeneity, i.e., a spatially ‘randomly distributed lot’, is
an ideal non-existing property. Heterogeneity is the rule - all
naturally occurring and manufactured materials are heteroge-
neous; it is only a matter of degree. Heterogeneity is manifested at
all scales of interest in a lot; as grouping and segregation
phenomena.

Material heterogeneity is the source of the correct sampling
errors (CSE) and will influence the quantitative expression of the
incorrect sampling errors (ISE) (preparation error being the only
exception, see further below). Gy [3,4] gave heterogeneity a
comprehensive, detailed mathematical expression for the first
time, although many incipient partial attempts are on record, see
Minnitt: “Pierre Gy Oration” at WCSB8, Perth, 2017 [5]. A superior
source fromwhich to start learning about these complex historical
matters is Pierre Gy's own review of the development history of
TOS [6e9] and recent excellent reviews of the intricacies of Gy's
mathematical developments Pitard and François-Bongarçon [10]
and Matheron [11]. These are highly recommended for the reader
interested in the full theoretical depth and power of TOS.

Here we proceed largely without this deep mathematical-
statistical background. However, it was necessary to present TOS'
unifying and sufficient minimum of Governing Principles (GP) and
Sampling Unit Operations (SUO), which are sufficient for a practical
understanding allowing the present objective to be fully under-
stood (see Table 1). In order to prepare the way for the de-
velopments below, this recent compact summation of TOS as a set
of axiomatic principles and unit operations is, therefore, presented
by fiat; but see DS3077 [12] and Esbensen&Wagner [13] for details.

For the treatment below we only need to remind of another of
Gy's inspirations, that of calling all original lot units (think of grains,
particles etc.) as well as the resulting cascade of fragments hereof
produced by accidental fragmentation as part of the impact from
the sample preparation process itself, as fragments. Gy thus termed
both the original units and their fragmented offspring fragments,
thereby being able to treat the complete lot heterogeneity realm in
ticulate materials with significant spatial heterogeneity - Theoretical
t sampling errors: Fundamental Sampling Error and Grouping and
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Table 1
Governing Principles (GP) and Sampling Unit Operations (SUO) - the necessary and sufficient framework for all representative sampling (Danish-Standards-Foundation [12],
Esbensen and Wagner [13]).

Sampling Governing Principles (GP) Sampling Unit Operations (SUO)

1. Fundamental Sampling Principle (FSP) 6. Composite Sampling
2. Principle of Sampling Scale Invariance (SSI) 7. Comminution
3. Principle of Sampling Correctness (PSC) 8. Mixing/Blending
4. Sampling Simplicity (primary sampling þ mass reduction)5. Principle of Lot Dimensionality Transformation (LDT) 9. Representative Mass Reduction (sub-sampling)
6. Lot Heterogeneity Characterization (0,1,2,3 D)

1 N.B. A sample can either be a single increment or a composite sample made up
of several increments covering the whole or parts of the lot volume. When no
confusion can arise, below the term ‘sample’ is used without loss of generality.
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a unifying manner: sampling (usually in the form of incremental
extraction) can on this basis be dealt with complete unity irre-
spective of the specific nature and status of the complement of
fragments making up the lot.

2.2. Theoretical nexus of TOS

In deriving the complete theoretical foundation for TOS, which
took Pierre Gy 25 years, everything starts with developing a
comprehensive understanding, in full mathematical statistical
dressing, of the phenomenon of heterogeneity. Gy strived quite a bit
with several different approaches, at first trying to formulate
principles for describing heterogeneity as a function of two
fundamental features (‘factors’), wiz, the distribution of composi-
tional differences between lot ‘units’, and the distribution of the
inherent unit (fragment) size distribution. However, Gy was never
fully satisfied with this approach; see Gy [6e9]. Matters came to a
head in 1974, at a course given in Brazil, when a suggestion was
offered to try to treat these independent distributions as just one,
expressed as the product of the two factors involved (a typical
‘engineering solution’, somewhat outside the deeply theoretical
quest Gy was on at the time). However, this turned out to be the
pivotal incentive Gy needed, a breakthrough, and he coined the
concept of the heterogeneity contribution, h, which ties together the
composition andmass aspects of heterogeneity in a comprehensive
tractable fashion.

The heterogeneity contribution is a quantity that can be
assigned to - in fact it represents the heterogeneity arising from,
both single fragments, hi and increments (groups-of-fragments), hn.

The general definition is as follows (for fragments, index i; for
groups, index n):

hi ¼
ai � aL

aL
:
mi

m
(1)

hn ¼ an � aL
aL

:
mi

mn
(2)

In which m and mn are the average mass of fragments, or
average mass increments consisting of groups fragments, as the
case may be and aL is the weighted average content of the lot
weighted with the pertinent fragment/group masses. Each het-
erogeneity contribution, hi, carries a contributing fraction of the
total heterogeneity of the lot.

By formulating all further theoretical developments in TOS on
this basis, a simplification was obtained that allowed Gy to finish
the comprehensive theoretical work in essentially just one more
year. Gy himself spoke about the fulfillment of the Theory of
Sampling in the year 1975. This year thus marks the divides into
TOS' gestation period (1950e1975) and the subsequent period of
equal length 1975e2000, broadly speaking, the latter period
mainly devoted to disseminating TOS to as many scientific and
technological fields and industrial sectors as possible.

There exist a bewildering number of different classes and types
of materials with their individual and common aspects of
Please cite this article as: P.O. Minkkinen, K.H. Esbensen, Sampling of par
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heterogeneity. Before Gy's theoretical breakthrough, it made very
little intuitive sense that all the world's myriads of extremely
different materials could ever be described by just one conceptual
and mathematical framework. Yet this was the reality before the
advent of the heterogeneity contribution. The reader is referred to
the autobiographical account of the scientific development history
of TOS in the words of its originator himself Gy [6e9].

In all material lots, individual fragments import their unique
share to the total lot heterogeneity; likewise if the point-of-view is
at the scale of groups-of-fragments (groups for short); groups are
identical with increments, the practical sampling units.

The power of TOS is related to three scales only, fragment scale,
increment scale and the scale (size) of the whole lot, which is
viewed as made up by the totality of the heterogeneity contribu-
tions from either of these smaller-scaled units.1 Thus, in order to be
able to describe the heterogeneity of all types of lots (indeed all
sizes of lots as well), one only needs these fundamental scales
where the heterogeneity contribution concept plays out its role.

At the end of this theoretical development, Gy was able to
encapsulate the central aspects of the key relationships between
practical sampling conditions and the material heterogeneity in
just three master equations presented below:

1. “Gy's formula” for the variance of the Fundamental Sampling
Error, originally published 1955 [2].

2. The central relationship between distribution (DHL) and
constitution (CHL) heterogeneity, which can be expressed as:
DHL ¼ varðhnÞ ¼ Y � Z� CHL ¼ Y � Z� varðhiÞ

3. Another, slightly more complicated relationship: DHL ¼
1þY Z
1þY CHL

It is possible to derive three of the four practical Sampling Unit
Operations (SUO) from just two of these equations and indeed
several of the Governing Principles as well, see e.g. Esbensen &
Wagner [13], Esbensen [14].
2.3. TOS' definition of CHL and DHL

Gy's insight regarding how to describe all aspects of heteroge-
neity necessary for dealing with sampling (via the heterogeneity
contribution concept), is that only the fragment scale and the group
scale are needed. He realized that there are only two kinds of het-
erogeneity manifestations needed for a full theoretical treatment,
wiz. Composition Heterogeneity, CHL, and Distribution Heteroge-
neity, DHL. Conceptual simplification resulted from the realization
that CHL and DHL account for two complementary aspects of the
same lot total heterogeneity, but that these play out their role at
different scales, wiz. the fragment scale (CHL) and the group scale
(DHL) respectively. CHL and DHL are conceptual complements
ticulate materials with significant spatial heterogeneity - Theoretical
t sampling errors: Fundamental Sampling Error and Grouping and
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accounting for the total lot heterogeneity but as seen from these
two different observation scales. Nevertheless, these two compo-
nents cannot be physically identified and separated from one-
another. These heterogeneity components are both needed as
theoretical components that play their role in TOS0 treatment of
heterogeneity and its influence on practical, empirical sampling.

CHL and DHL makes it possible to use the underlying mathe-
matical formulation to derive the four SUO's with which all of
practical sampling is carried out, always governed by the six GPs.
This achievement forms the basis for a unified approach of practical
sampling of the bewildering number of different materials and lots
met with in science, technology and industry. This systematic
approach to sampling has always been implicit in the original
mathematical framework, but never formulated and systematized
fully as laid out in Table 1.

In keeping with this two-scale approach, Gy defined the sum-
total heterogeneity impact from all fragments, and from all vir-
tual groups in the lot, (see below), by the same statistical formalism.

CHL: The constitution heterogeneity of all NF lot fragments is
defined:

CHL ¼ s2ðhiÞ ¼
 X

i

h2i

!,
NF (3)

The essential feature is that CHL is defined as the variance of all
heterogeneity contributions from all fragments that together make
up the whole lot.

Regarding DHL, the scale of observation is changed from that of
fragments to that of groups-of-fragments (groups) but otherwise
the argument is identical.

DHL: The distribution heterogeneity, DHL, is defined as the
variance of the heterogeneity contributions between all increments
(groups), s2(hn); there are NG potential groupsmaking up the whole
lot.

DHL ¼ s2ðincÞ ¼
X
n
h2n
.
NG (4)

Again, the whole can also be viewed as being made up of all
groups.

TOS now further derives a key interrelationship between CHL

and DHL, by invoking two phenomenological factors, Y and Z, the
grouping factor and the segregation factor.
2 Always subject to complying with FSP, the Fundamental Sampling Principle,
which states that increments must be extractable from anywhere in the lot. No
exceptions from this principle is acceptable.
2.3.1. Y and Z
The definition and meaning of Y and Z in TOS is as follows:
Y is the grouping factor, a conceptual factor used in the theo-

retical development to quantify the degree of local heterogeneity,
i.e., the effect of grouping. However, it is also physically identifiable
as a measure of the size of the sampling unit, the increment (group
of fragments) but expressed in a somewhat surprising unit (not in a
mass unit), see further below.

After a series of attempts at reducing the heterogeneity char-
acterizing equations with various ‘simplifying expressions’, Gy
succeeded with the following definition of Y (the formalism of this
ratio originates as the so-called ‘finite lot’ correction found in
statistics):

Y¼ [NF e NG] / [NG -1] (5)

In TOS, Y can take any value running from 1 to (almost) infinity
[1;∞] depending on the size of the group, the number of fragments
in the incrementNF inc, in relation to the size of thewhole lot, which
in turn can be characterized by its totality of fragments, NF.

For the general case of sampling a lot which is large compared to
Please cite this article as: P.O. Minkkinen, K.H. Esbensen, Sampling of par
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a single, or a few (ninc) increments to be aggregated (composite
sampling), it was realized that the numerator is essentially NF and
the denominator essentially NG. Thus, in this case

Y¼ [NF e NG]/[NG -1] can bewell approximated by [NF/NG] (if NF »NG

and NG » 1)

This latter expression opens up for a powerful understanding.
Physically [NF/NG] is the average number of fragments in a group
from the lot in question. This approximation makes it possible in
certain situations to deal with all potential groups as represented
by such an average group (as concerns size). In this way Y¼ [NF/NG]
is a measure of the size of the groups in question, i.e. the practical
increments, used to sample the lot. This is the key theoretical link to
the important role of the size of the increments used in the actual
sampling operations. It then matters very much ‘who’ or ‘what’
decides this practical sampling tool size; there is a lot of experience
in TOS regarding this critical issue, see e.g., [15]. An introduction to
heterogeneity and appropriate sampling modes can also be found
in Ref. [13], which topic is greatly expanded below.

Below the new formulation is similarly focused on the incre-
ment size, but now in relation to the general lot size, particularly in
the case where the lot no longer can be considered as large, which
lies behind all the standard assumptions outlined above.

Z¼ segregation factor is a true phenomenological factor, simply
meant to represent the degree of long-range segregation intensity,
typically used in a simplistic fashion. Z ranges the interval [0; 1] but
will never be exactly equal to either bracket, although it can come
arbitrarily close for specific materials, Fig. 1. Gy originally intro-
duced Z in a different context, in which, in addition to represent
segregation, it also functioned in a more complicated fashion
regarding detailed mathematical reductions, see Gy [3], and Pitard
[15]. Suffice here to focus on the physical segregation effect,
however.

A key theoretical development was derived in Gy [3], that DHL is
proportional to CHL and the major achievement was that this could
be expressed explicitly using the same two factors only:

DHL ¼
1þ Y Z
1þ Y

CHL (6)

Gy [6e9] discusses various issues regarding Yand Z in full detail,
issues made more accessible by Pitard [15]. Here it suffices to note,
keeping in mind that Z for a given material is always a constant
smaller than 1, that to all practical intents and purposes, the smaller
the effective size of the sampling increments used, i.e. the smaller Y,
will have the effect to reduce DHL. With a higher number of smaller
increments, it will be easier to produce a composite sample with
better coverage of the full lot heterogeneity. Thus the higher the
number of increments, the better to counteract the effects of lot
heterogeneity.2

The other key equation to come out of Gy's detailed formula-
tions relates to the sampling variance stemming from FSE and GSE
specifically. Because of the intimate relationship showed in Eq. (6),
it was possible to describe the following also by using only the same
two factors Y and Z:

s2GSE ¼ Y,Z,s2FSE (7)

From this equation it appears that in order to reduce the sam-
pling variance contribution from GSE, either Y or Z, or both factors
ticulate materials with significant spatial heterogeneity - Theoretical
t sampling errors: Fundamental Sampling Error and Grouping and
18.10.056



Fig. 1. Physical meaning of Y and Z, the grouping and segregation factors in TOS.
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need to be reduced (s2FSE is constant for a given material)3; Y was
treated above, and Z can be reduced by mixing the material to be
sampled and/or using a higher number of increments in composite
sampling. See Pitard [15] for the full mathematical details. In
passing it is noted that it is always also an option to reduce var(FSE),
although this will require added workload, by reducing the top
particle size of the material in question; this will drastically reduce
var(FSE) as it is proportional to the third power of the particle size,
see all standard TOS references.

This latter approach means that the material in question is now
in a completely different status, it is in fact for all sampling pur-
poses a completely newmaterial, the parameters of which (used in
Gy's formula) must all be estimated anew e hence the sometimes
significantly increased workload.

2.3.2. The critical role of increment size
When sampling significantly heterogeneous materials, the size

of the increment plays a critical role. For clarity, this is here illus-
trated with a few 1-D lot examples without loss of generality.

Below four principally different types of heterogeneity patterns
are presented. 1-D strings consist of two different kinds of particles
with identical masses; the analyte mass fraction is 0 in matrix
particles (black), and 1 in analyte particles (grey). In all cases shown
below the average analyte mass fraction is 0.1 (¼10%) for the whole
lot, i.e., the whole length of the string. The particles are assumed to
have identical masses (1 g) and volumes (1 cm3). As the conse-
quence of this setup the analyte concentrations expressed either as
mass, volume or number fractions are numerically identical.

Fig. 2 first illustrates how simulated in silico sampling runs relate
to practical sampling.

The four heterogeneous lot types (Fig. 3) are here sampled with
increasing increment sizes. The lot size, the number of particles
forming the lot, was 10,000 equal size particles in each string. All
extracted increments were ‘analyzed’ by simply counting the
fraction of the analyte particles, i.e., in these experiments there is
no analytical error at all. The resulting variance of these analytical
results thus presents the total sampling variance only, s2s , which is
3 While in many situations Y and Z may be inter-connected, one can change the
number of increments used for composite sampling for example, and thus reduce
the numerical value of Y e just as the SUO of mixing will decrease Z; reducing
var(FSE) can be achieved by another SUO, crushing.

Please cite this article as: P.O. Minkkinen, K.H. Esbensen, Sampling of par
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plotted along the y-axis as function of the increment size (delin-
eated along the x-axis).

Fig. 3 illustrates the resulting relative sampling variance as
functions of increasing increment sizes from 1 to 5000 particles.
The illustrations in the lower part show the results for model
heterogeneity patterns shown in the upper part of the figure. For
comparison B¼ shows the theoretical results of a random binomial
distribution. Vertical arrows show the effect of segregation as the
sampling variance difference in comparison to the ideal case of
sampling a random binary lot with identical average concentration
with the segregated lot. Fig. 4 shows the results as log-log plot in
order better to show the relative differences.

The principal advantage of using a larger increment size is
obvious as evidenced by the clear sampling variance reductions
revealed (Figs. 3 and 4). This effect varies as a function of the
different types of heterogeneities illustrated. The binomial distri-
bution is usually considered as the archetype random distribution,
which serves well as a reference of an ideal lot. This is always the
easiest lot type to sample of all alternatives, but unfortunately, this
simplistic model has only very little realism for the overwhelming
number of material lots in science, technology and industry.

In Figs. 3 and 4, the vertical double-headed arrows show the
effect of segregation (and grouping) in comparison to this ideal
random binary model. There is but little systematic patterns
observable in the segregation-induced inflationary effects on the
sampling variance, an important indication that ‘heterogeneity’.
Even in these carefully constructed simplistic examples segregation
effect defies any systematization. The empirical equivalents of
these relationships will be more marked for even less well-
behaved, more realistic heterogeneous lots materials met in real-
world practice.

Lesson: Segregation and grouping, especially if the segregation
pattern consist of clusters of analyte containing particles, makes it
more and more difficult to obtain a valid and reliable sample
rendition of increasingly heterogeneous, irregularly distributed
lots. Below it will be emphasized however, that the size of the
increment as used here in these experiments are to be understood
as total composite sample sizes, i.e., the above is manifested not to
be interpreted as blank permission for grab sampling with
increasing sample mass. Attempt to counteract the effect of
segregation by increasing the size of the individual increments
(increasing increment mass) mainly reduces the short-range
ticulate materials with significant spatial heterogeneity - Theoretical
t sampling errors: Fundamental Sampling Error and Grouping and
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Fig. 2. Strings representing different heterogeneity types are cut into increments of increasing size. From each increment larger than one particle, the average aLi and within-
increment variance s21i are calculated from the individual fragments. The variance CHL, calculated from the analyte concentrations of all individual particles, is the quantitative
measure of the constitution heterogeneity, or the fundamental sampling variance, s2FSE of the lot. The variance of the increment averages is the long-range variance component of the
total distribution heterogeneity using increment size ninc, while the average of the s21i

0
s is the short-range variance, i.e. the sum s2FSE=ng þ s2SR .

Fig. 3. Upper part shows schematic lots representing four major distribution patterns. The strings consist of two different kinds of particles with identical masses. Each string
contains 10,000 particles. In all strings, the mass fraction of analyte in matrix is 0, and 1 in analyte particles. In all cases the average analyte mass fraction is 0.1 (¼10%). String 1:
Random distribution of analyte particles; string 2: Grading (segregating) concentration increasing with distance from the left; string 3: Randomly distributed clusters of four analyte
particles; and string 4: Single, coherent cluster of 1000 analyte particles. The upper left-hand parenthesis illustrates an increment size of 10 particles for scale. B: Solid line gives the
grouping effect of a random binomial mixture. Difference from B (vertical arrows) shows the effect of segregation as function of increment size.
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variance (as shown below), whereas increasing the number of in-
crements reduces the effect of the long-range sampling variance in
estimating the lot mean and its variance. Consequently, it is ad-
vantageous to collect large(r) samples in all situations using com-
posite sampling instead of taking the larger samples as single
increments. In practice it is indeed well known that a high(er)
number of small(er) increments, ninc, distributed so that they cover
the full lot volume as well possible, is by far the most efficient way
to improve sampling procedures by better counteracting lot
heterogeneity.
Please cite this article as: P.O. Minkkinen, K.H. Esbensen, Sampling of par
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2.3.3. Dependence of the between-increments variance on
increment size and heterogeneity type

In case the concentration, ai, or another property of the lot to be
estimated, is indeed randomly distributed (ideal case), the sam-
pling variance can be estimated from a pilot study collecting a
sufficient number of samples from the lot and calculating their
variance, s2s . In this case, the variance of the lot mean is inversely
proportional to the number of extracted increments, ninc, (classical
statistics):
ticulate materials with significant spatial heterogeneity - Theoretical
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Fig. 4. Same illustration as Fig. 3 lower panel, but here shown as a log-log plot for
detail at large increment sizes. String 1: Random distribution of analyte particles;
string 2: Grading (segregating) concentration increasing with distance from the left;
string 3: Randomly distributed clusters of four analyte particles; and string 4: Single,
large coherent cluster of 1000 analyte particles. B: Solid line gives the grouping effect
of a random binomial mixture. Difference from B (vertical arrows) shows the effect of
segregation as function of increment size.
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s2aL ¼
s2s
ninc

(8)

Similarly, if the increment size, ms1, that was used originally for
estimating the sampling variance s2s , is changed toms2 the effect on
the new sampling variance can be predicted:

s2s2 ¼ ms1

m2
s2s (9)

However, equation (9) is valid if-and-only-if the distribution of
the measured property is strictly random within the lot. In the
presence of any type of segregation, clustering or drift, i.e. changes
in concentrationwith time or location, the situation is always more
complicated.

Segregation affects both the estimate of the sampling variance
of the lot mean and the between-increment variance estimated by
sampling only a fraction of the lot in a principally unpredictable
way; it is only possible to estimate the effects hereof by an
empirical experiment, i.e., a Replication Experiment or a vario-
graphic characterization [12]. Fig. 3 showed the sampling variance
results of four model lots consisting from 1-dimensional strings of
different heterogeneity patterns as function of increasing incre-
ment size. Three different segregation types were compared to an
ideal random binary distribution. In all cases, the number fraction
of analytical particles in the 1-dimensional lots were 10%. The mass
fraction of analyte in analyte containing particles¼ 1 while that of
matrix particles¼ 0. Assuming that matrix and analyte particles
have identical mass, the mass fraction of the analyte is identical
with the number fraction.

In these simulated sampling runs all strings consisted of 9000
particles with zero concentration and 1000 particles with concen-
tration ai¼ 1. The average of all four ‘lots’ as mass fraction therefore
were aL¼ 0.1, notably independent of the specific heterogeneity
pattern depicted.

If the particles are regarded individually, the variance of a string
consisting of 9000 zeros and one thousand ones4 is s2¼ 0.09, again
independent on how the analyte particles are distributed in the
string. Thus the relative sampling variance of the individual parti-
cles of the lot, i.e. the variance of the Fundamental Sampling Error,
4 s2 ¼
P

ðai�aLÞ2
NL

; NL ¼ 9000þ 1000 ¼ 10000.
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s2FSE ¼ s2
a2L

¼ 9. s2FSE is the quantitative measure of the Constitution

Heterogeneity, CHL. CHL is an intrinsic property of the sampled lot
and it does not depend on how the particles are geometrically
distributed within the lot.

The following general conclusions can be drawn from the sim-
ulations shown in Figs. 3 and 4:

Random sampling of individual fragments:

� If the lot to be sampled is random, the between-sample variance,
as a function of sample size, follows the theoretical values pre-
dicted from binomial distribution. In this case, it does notmatter
if the samples are taken as single increments or by compositing
several smaller increments or fragments as long as the sizes of
the final samples to be analyzed are equal: The expected sam-
pling variance is the same. In Figs. 3 and 4 the solid line gives the
predictions (between-increment) variance as derived from the
binomial distribution. This line shows the effect of increment size
(sample mass), i.e. the variance of increments consisting of
groups of individual fragments or particles. Grouping and
segregation effects are treated more closely in section 5 below.

� In case of segregation, if it is possible to collect a composite
sample or samples by randomly picking individual fragments
(ideal sampling), this process can be regarded as a virtual mixing
of the lot and, consequently, the expected result again follows
the random distribution. However, this approach is seldom a
feasible procedure in practice, either because the fragments are
too small and too many to be picked and analyzed individually,
or some part(s) of the lot are not accessible, thus preventing
truly random (equiprobabilistic) sampling.

Sampling of groups-of-fragments (increments):

� When increments consist of local groups-of-fragments (or par-
ticles), segregation affects the between-increment variance in
an unpredictable way. This between-increment variance is now
called Grouping and Segregation variance, s2GSE which is the
quantitative measure of the Distribution Heterogeneity, DHL.

� Figs. 3 and 4 show that s2GSE depends both on the heterogeneity
pattern and increment size. It can only be estimated experi-
mentally, which may be costly, because then replicate mea-
surements to estimate increment size effects have to be carried
out by varying the increment size. This costly and somewhat
cumbersome approach is, however, always a feasible way to get
to come to grips with the otherwise elusive s2GSE .

� Experiments carried out using only one single increment size,
cannot be used to predict how changing the increment size will
affect the s2GSE , because DHL depends on the specific heteroge-
neity pattern of the lot and has to estimated empirically for
different increment sizes.

� At extreme segregation, i.e., extreme clustering (heterogeneity
pattern 4), DHL is equal to CHL.

� Segregation is always the cause of auto-correlation at some
scale, which has the consequence, as has been shown in
numerous cases in the TOS literature (and will also be shown
below), that the uncertainty (the sampling variance) of the lot
mean depends both on the number of samples analyzed and on
the sampling mode. The effect of the sampling mode cannot be
estimated without first characterizing the heterogeneity of the
lot, which requires however, that one mode of sampling, or
other, is used e a vicious circle that cannot be broken. Ramsay
[16] suggested the use of a reference lot with which to ascertain
the effects of alternative sampling modes (and/or the same
sampling mode applied with different factors, e.g., different
ninc). This approach was criticized severely for lack of clarity of
ticulate materials with significant spatial heterogeneity - Theoretical
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thought and practicality in the light of the above; full details of
this critique can be found in Esbensen & Wagner [13].

3. Modified theoretical formulation, CH and DH

3.1. Constitution heterogeneity, CH

The modified theoretical analysis below relates to the scale of
fragments. Let us assume that a lot consists of elementary frag-
ments, each having a mass mi and a mass fraction ai of the con-
stituent of interest. The total number of fragments in the lot is NF,
the total mass mL and the average fragment mass m ¼ mL=NF . Gy
defined the heterogeneity contribution hi of each fragment as the
relative deviation from the lot mean aL.5

hi ¼
ðai � aLÞ

aL
,
mi

m
¼ NF

ðai � aLÞ
aL

,
mi

mL
(10)

The true mean concentration of the lot is the weighted mean,
weighted by the masses of all individual fragments of the lot:

aL ¼
P

miaiP
mi

¼
X�

mi

mL
,ai

�
(11)

It is important that the lot average is calculated as the weighted
mean of all fragments. Especially if the analyte concentration cor-
relates with fragment size, the arithmetic mean is biased, Minkki-
nen [17,18].

The mean of the heterogeneity contributions is always zero:

meanðhiÞ ¼
P

hi
NF

¼ 0 (12)

The variance of hi is equivalent to the relative variance of the
primary increments if these consist of single fragments only, and is
then called the Constitution Heterogeneity CHL - it is also called the
Fundamental Sampling Error variance s2FSE of the average fragment
mass m :

CHL ¼
1
NF

X
h2i ¼ NF

XNF

i¼1

ðai � aLÞ2
a2L

m2
i

m2
L

(13a)

It is of course very seldom possible, or practical, or interesting, to
analyze every fragment of a large lot.6

Instead, it may be possible to collect a sample of nf fragments
and analyze these individually; this is the practice used in so called
heterogeneity tests. The validity of this approach is critically
dependent upon the assumption that this particular sample is
indeed representative of the whole lot. In this case, the fragments
have to be collected individually using a random, or preferably, a
stratified random selection mode in order for this sample to be
representative.

If the sample is small in comparison to the lot (nf≪Nf) then an

estimate, cCHL, of the Constitution Heterogeneity is obtained
replacing NF in Eq. (13a) with nf �1:

cCHL ¼
1

nf � 1

X
h2i (13b)
5 Analytical results, ai and aL are usually given by mass fractions (or mass %). If
the results are given as mass-concentrations, the masses in equations (10) and (11)
can be replaced as increment or sample volumes.

6 For very special cases, it may be of key interest to keep analytical track of all
fragments in a lot, e.g. if the fragments are very big relative to the lot size, but there
is no generalization possible to the much more often occurring ‘standard’ cases in
which sampling in the sense of TOS applies.
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CHL is an intrinsic property of any material, independent of the
spatial distribution of the fragments within the lot, as was shown
by the examples above. However, it can be changed, but only if the
number and properties of the particles of the lot are changed, e.g.,
by crushing. Comminution by crushing and grinding changes both
the number (NF) andmass (mi) of fragments in the lot, as well as the
analyte concentration of the fragments, if they consist of a mixture
of analyte andmatrix. Aggregation (agglomeration) of the particles,
e.g. crystal-sticking-together or crystal growth in crystallization
processes has the opposite effect; NF decreases while the massesmi

increase, while the lot mass mL is staying constant.
Both these principal cases, crushing and aggregation, corre-

sponds to a fundamentally new material system, new lots, with
completely new heterogeneity characteristics. All features per-
taining to the previous system, e.g. estimated heterogeneities,
estimated sampling error variances etc. have to be re-estimated.
There are no characteristics that are transferable to such a new
system.

Multiplying Eq. (13a) by the average fragment mass gives an
equation for another quantity, which Gy called the Heterogeneity
Invariant, HI, or the Constant Factor of the Constitution
Heterogeneity:

HIL ¼ m,CHL ¼
m
NF

X
h2i ¼

XNF

i¼1

ðai � aLÞ2
a2L

m2
i

mL
(14a)

Usually it is not possible, or practical, to analyze all fragments of
a lot. However, in that special case, if the fragments/particles are
large enough to be analyzed individually, HIL can be estimated
analyzing a sample consisting of nf elementary fragments:

cHIL ¼ m,cCHL ¼
m

nF � 1

X
h2i (14b)

HI has the dimension of mass, if the analyte content is given as
mass fraction. HIL represents the variance, the sampling error, of a
virtual sample having the size of unit mass (expressed e.g. in kg, g,
mg) depending in which unit mi and mL are given. If the concen-
tration is given as mass/volume, the unit of HIL is that of volume
(dm3, m3).

For a particular lot from which HIL is estimated, the variance of
the fundamental sampling error of a composite sample of sizems ¼Pn
i¼1

mi, consisting of n randomly picked particles, depending on the

sample size of the composite sample, is

CHðmsÞ ¼ HIL
ms

¼ s2FSEðmsÞ (15)

Eq. (15) can be used to predict the effect of changing the incre-
ment or composite sample mass, but again, only if the particles are
randomly picked from the lot without changing the particle prop-
erties (or a composite sample with size ms is made of particles
picked strictly randomly as is the key procedure in heterogeneity
tests). Only for this ideal sampling process can FSE be used to es-
timate the total sampling variance of the lot mean, s2TSEðaLÞ. Eq. (15)
gives the variance of the fundamental sampling error of as function
of the sample mass picked from a random lot as single increments.

If an estimate, CH or HI of a lot is available and the lot mean is
estimated from ncomp composite samples made picking the parti-
cles (fragments) individually and each having a mass ms, the total
sampling variance of the lot mean aL of an ideal sampling process is

s2FSEðaLÞ ¼ s2TSEðaLÞ ¼
HIL

ms,ncomp
¼ s2FSEðmsÞ

ncomp
(16)
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Any type of segregation in a stationary lot, or drift of the process
mean with time (dynamic, flowing lots), which breaks the
randomness of the analyte distribution, will generate other error
components. For example, process, manufacturing and environ-
mental data sets often show different kinds of periodic or quasi-
periodic fluctuations.

The FSE calculations given above provides an estimate of the
sampling variance of an ideal sampling process, which constitute
the theoretical minimum sampling error of any lot involved. This can
only very rarely be achieved in practice however for natural ma-
terials and the type of materials of interest in technological and
industrial materials processing and manufacturing. In addition, in
practice it is of course impossible to study a(ny) lot by picking and
analyzing all individual particles or fragments. Instead, resort will
always have to be to taking increments, consisting of local group-
seof-fragments, usually taken with the view of producing com-
posite primary samples.

3.2. Distribution heterogeneity, DHL

The much more realistic situation, which dominates in practice
over the ideal cases treated above, is that there is distinct non-
randomness in the lot. In natural lots there is practically always
segregation at some scale, e.g., due to stratification caused by gravity
or centrifugal forces and differences in particle properties, gradual
changes in process streamwith time (drifting mean); and there are
many other agents that can also contribute towards a breakdown of
an establishedmixing uniformity; Pitard [15] discusses these issues
in full detail. Analyte particles and fragments may also show a
propensity to formmore-or-less coherent and well-defined clusters
of analyte containing particles or grains of different sizes.

Gy [3] defines Distribution Heterogeneity, DHL, as the between-
group (between-increments) variance originating from such
grouping and segregation effects.

The theoretical analysis of practical sampling of realistic lot
heterogeneities now proceeds at the scale of groups-of-fragments
(i.e. the practical increment sampling scale), but derivation of the
pertinent heterogeneity characteristics follows the exact same
formalism as for the fragment scale.

If the lot is divided into ng virtual groups (potential sampling
increments, ng¼mL/mn) having concentration an and mass mn, the
distribution heterogeneities of these increments are defined as

hn ¼ ðan � aLÞ
aL

,
mn

mn
¼ ng

ðan � aLÞ
aL

,
mn

mL
(17)

Just like the mean of the constitution heterogeneities of frag-
ments, also the mean of the increment heterogeneities is always
zero

meanðhnÞ ¼
P

hn
ng

¼ 0 (18)

The between-increment variance, called Distribution Heteroge-
neity, DH, is the mean of squared heterogeneities, hn:

DHL ¼ s2ðhnÞ ¼ 1
ng

X
h2n ¼ ng

Xng

n¼1

ðan � aLÞ2
a2L

m2
n

m2
L

(19)

If the increment distribution is fully and completely random (or
randomized by picking individual increments randomly from the
lot), DH can be derived from HIL or CHL as function of the average
increment mass, minc.

DHL of random distribution is DHL ¼
HIL
minc

¼ s2FSEðmincÞ (20)
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If a lot has any type of non-isotropic characteristic; segregation,
clustering or location- or time-dependent changes in concentration,
then DHL is a linear combination of all short-range and long-range
sampling variances.

The short-range variance s2SR has two components: the incre-
ment size effect due to the variance of the Fundamental Sampling
Error ðHIL=msÞ and the variance due to the segregationwithin of the
groups/increments sampled, s2Seg . The long-range variancemay also

have two components: s2LR1 and s2LR2, inwhich s2LR1 is generated due
to a drift or other non-periodic change of concentration dependent
on locations of the sampling sites in stationary lots (trends), or in
sampling time (process sampling, environmental monitoring or
similar). s2LR2 is the variance due to a possible periodic, or quasi-
periodic fluctuation of the concentration within the sampling
target or along the process time direction. This type of semi-regular
heterogeneity fluctuation is often observed in technological and
industrial processing or manufacturing cases.

Thus, for a non-random distribution the following applies:

DHL ¼ s2ðhnÞ ¼ s2SR þ s2LR ¼ HIL
mn

þ s2Seg þ s2LR (21)

If, as above for CHL, DHL is multiplied by the average increment
size mn another quantity, HI*L , is obtained:

HI*L ¼ mn,DHL ¼ HIL þmn s2Seg þmn s2LR (22)

Of these quantities HIL is independent of distribution, and con-
stant as long as the properties or the particles/fragments consti-
tuting the lot are not changed, in other words it is the contribution
from the fundamental sampling variance.

Both s2Seg and s2LR are functions of sample mass and distribution

or drift between sampling points and consequently, HI*L is also a
function of sample mass because with increasing sample mass it
includes some of the long-range variation, the more the larger the
increments used.

However mixing of the lot before sampling will reduce both s2Seg

and s2LR. In Fig. 4 the random mixture shows the effect of grouping
when the increment size is changed. The difference between the
random mixture and the different segregation patterns shows the
effect of segregation on the sampling variance (DHL). As Fig. 4
shows, this is a complicated function of sample mass and segre-
gation pattern. Minkkinen & Esbensen [1], investigated in more
depth some of the practical effects of these relationships.

3.3. Binary mixtures: a special case

3.3.1. “Gy's formula”
Eqs. (13) and (14) are exact without any assumptions.
For a first approximation to estimate of CHL and HIL of materials

containing analyte particles imbedded in the matrix fragments Gy
[2] presented an equation (often called the “Gy equation” or “Gy's
Formula”) with the aim to estimate the relative sampling variance
s2s due to the fundamental sampling error (only), as a function of
observable characteristics of the lot material. This early achieve-
ment quickly became famous in the sampling and other commu-
nities, although the originator himself was distinctly unhappy with
the many outlandish applications that quickly appeared under his
name (pers. com), see also [6e9].

The details of the formula need careful attention:

s2s ¼ f g b c
ms

d3 (23)
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Box

Segregation vs. increment size (mass).

The strings shown in Figs. 3 and 4 can also be interpreted as

solid rods - to represent ores, rocks drill cores etc. Here

sampling variances depend both on the sample mass

(sampling:¼ ‘cutting rods into pieces’, or sub-lengths) and

the specific heterogeneity pattern. For increments cut from

the solid rods, or increments of the same mass taken from

the particle strings, the sampling variances are equal as

long as their heterogeneity patterns are similar. From the

simulations in Figs. 3 and 4 a fundamental insight regarding

the liberation factor (b) appears:

In all four lots all analyte particles are liberated, but only the

results for heterogeneity pattern 1 follow Gy's equation (23)

for which b ¼ s2s ,ms=ðf g c d3Þ. The three other heteroge-

neity patterns give liberation size estimates which are larger

than 1.00 cm used in the simulations, and different when

estimated at different increment size. Assuming full libera-

tion and randomness (b¼ 1), the characteristic particle size

can be determined by reorganizing Eq. (23): d3 ¼
s2s ,ms=ðf g c bÞ. When d is estimated from the ideal random

set results, correct liberation size estimates are obtained

independent on increment size (ms) (line 1 in Figs. 3 and 4).

For the three remaining heterogeneity patterns, the particle

size estimates vary with increment size. In these cases, the

empirically estimated particle sizes are identical to the

particle sizes of equivalent binary mixtures (equal analyte

and matrix particle sizes) that would give equal sampling

variance with the same increment mass. Consequently,

using the actual liberation size, the liberation factor b, esti-

mated from the empirical sampling variances, is different

from 1. Thus b estimated from the segregated lots repre-

sents the combined liberation and segregation effects. This

feature was a prime motivating driver for the present

theoretical developments.

In case of segregation, it is impossible to estimate how

changing increment size will affect the sampling variance

(in order to do that, extensive (expensive) experiments have

to be carried out using several increment sizes). Indepen-

dent of segregation pattern, when the increment size ap-

proaches the liberation size, the sampling variance

approaches the theoretical Gy equation curve. While in

simulations to it is possible to ‘analyze’ every fragment and

increment as was done above, in practical sampling it is

only possible to analyze a limited number of increments.

Segregation is discussed below in more detail. In simula-

tions it is possible to ‘analyze’ every fragment and incre-

ment, in practical sampling it possible to analyze only a

limited number of increments.
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Herems is the mass of the sample increments (either individual
fragments for an ideal sample or groups of fragments for a com-
posite sample), and d is the characteristic fragment top-size, or
particle top-size, defined as the upper cut-off size that in sieve
analysis retains 5% of the material.

The shape factor f is defined as the volume ratio of the sampled
particles having the characteristic dimension d to the volume of a
cube having the same side length d. For spheroidal particles
f is approximaed well by 0.5 which is therefore often used as the
default value for this factor. This is based on Gy's extensive empirical
crushing experiments Gy [3, pp. 82e86], where several types of
solid materials very often produced ~ spheroidal fragments with a
shape factor close to 0.5. Well-known exceptions from this are flaky
materials, e.g., gold nuggets and mica schist with f equal to
[0.1e0.2].

g is a characteristic of the size distribution. In Gy's many
crushing experiments most materials resulted in a wide size dis-
tribution (with ratios of upper and lower cut-off sizes, d0.95/d0.05
>4). If the characteristic particle size was defined as upper cut-off
dimension, the size distribution factor was close to the value
g¼ 0.25 allowing this to be used as another default value for
approximate evaluation of s2FSE . A more accurate value can be esti-
mated from an empirical size distribution analysis, at the cost of the
sieving work normally needed in analyzing large samples for size
distribution.

Composition factor c can be estimated if the particle properties
of a binary mixture are known:

c ¼
�
1� aL=a

�2
aL=a

rc þ
�
1� aL=a

�
rm; (24)

where aL is the mean concentration of the lot, a the concentration
of the analyte in the critical particles, rc and rm are densities of the
analyte-bearing particles and matrix respectively. In liberated
particle mixture of equal particle sizes, c is equal of the sampling
variance of 1 g samples.

b¼ liberation factor, is an empirical correction factor used if the
analyte bearing particles are found embedded as inclusions in other
matrix fragments. If the analyte particles are fully liberatedb¼ 1.

Many attempts have been made to model the liberation factor
with simple empirical equations, e.g. b ¼ ðdlib=dÞx ¼ d3�x. The
liberation size dlib is defined as the characteristic size of the
embedded analyte particles. Such a simple model is applicable only
for a material for which x is estimated empirically and within a
relatively narrow fragment size range. See Minnitt [19] for an in-
depth introduction to the many intricacies involved in dealing
with b, which covers the extensive literature corpus involved well
(see Box).

Gy's equation has received much more focus in the sampling
community and literature than Gy himself intended. It has been
vastly misused, but also unduly criticized, forgetting the purpose
and the assumptions made in deriving it (the authors humbly
confess to having been guilty of the same sin, earlier in their careers
e this is not an easy matter to master). This equationwas originally
derived specifically to allow an approximate estimation to an order-
of-magnitude only, of the sampling variance of binary mixtures. The
liberation factor was introduced to allow the sampling error esti-
mation of unliberated materials; however, it was not understood at
the time that the empirically estimated liberation factor is in fact
also a measure of segregation, and thus not as simple as originally
envisaged. Pierre Gy's own journey is well rendered in Gy [6e9],
and in Minnitt [19].

Thus the assumptions made in deriving Eq. (23) need being
outlined clearly: 1) particles containing the analyte and the matrix
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particles are assumed to be similar, i.e., they have similar shapes (or
at least similar masses) and similar size distributions expressed as
mass fractions, 2) matrix particles do not contain the analyte.When
Eq. (23) is used to estimate the relative variance of a liberated
mixture (b ¼ 1), Eq. (23) gives the relative variance of a binary
mixture consisting of particles having similar size and shape where
the matrix particles do not contain any analyte. This solution is
identical with models derived from the binomial distribution.

There is practically no limit to the number of materials in the
literature, which (very often wrongly) have been forced to ‘fit’ into
ticulate materials with significant spatial heterogeneity - Theoretical
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these straightjacket assumptions, materials which are de facto very
different from binary mixtures. It is best not to give individual
references; it is only interesting how to move on towards a more
reflected use of Gy's formula.

If DH or HI* have been estimated experimentally, the particle
size d of a liberated binary mixture giving the same variance as the
experimental mixture, can be estimated by reorganizing Eq. (17).

d ¼
�
DH,ms

f g c

�1
3

¼
�
HI*

f g c

�1
3

(25)

Given the special assumptions of f ¼ g ¼ 1; the characteristic
particle size of an equivalent binary mixture consisting of cubic
particles is obtained. For gold, typical values are: f¼ 0.15; g¼ 0.25.
These values are used in the example worked out below.

Fig. 5 shows the difference of the HI from Eq. (23) in comparison
to exact value from Eq. (14a). The results show that when matrix
particles are smaller than the analyte particles, the difference is
small and Gy's equation gives a fair approximation of the FSE, but
the difference increases rapidly, when matrix particles become
larger than the analyte containing particles.

Thus before Gy's formulamay have quantitative relevance as per
its original objective (an order-of-magnitude estimate only), there
are usually far more damage done by not focusing sufficiently, if at
all, on the prime sampling directive: elimination of all ISE, followed
by maximal reduction of the effects stemming from s2

GSE . The
quantitative effects from these sampling errors very often surpass
those stemming from s2

FSE alone by orders-of-magnitude
themselves.
4. Practical sampling of heterogeneous lots

Asmentioned, normally it is not possible to analyze all, or a large
enough number of individual particles or fragments of any real
Fig. 5. Comparison of HIL calculated from Gy's equation (dotted horizontal line) and
from the heterogeneity as function of particle size ratio dmatrix/danalyte (solid line).
Analyte mass fractions are (top-down): 0.01, 0.05, 0.1, and 0.2. On left-hand panels is
plotted the density of the matrix rm ¼ 0:5,rc; while the right-hand panels shows the
density of the critical analyte, rc ¼ 0:5,rm .
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(large) lots. Only in simulations, or if a small lot is constructed in
order to demonstrate the sampling process in lab scale, is this
possible.

However, CHL and DHL can sometimes be estimated experi-
mentally by sampling the lot. For example, if the lot particles or
fragments are large enough, so that they can be analyzed individ-
ually, a reasonably good estimate of CHL and HIL can be obtained; it
is then only a matter of the effort one is willing to put in. Examples
of such materials would be pelletized or granulated products, large
grain aggregates, certain food commodities (e.g. nuts). Even small
individual particles can be analyzed by micro analytical techniques,
like electron microscopy with X-ray analysis and in many recent
cases using chemical image analytical techniques (CHEMSCAN).
Lyman [20] gave a very illuminative illustration of this powerful
approach used for smaller and smaller lags. Bedard et al. [21] dis-
cussed the critical case of significantly ‘nuggety’ referencematerials
used in X-ray analysis with illuminating examples; the reference
material masses in typical use were shown to be significantly to
small in several cases.

DHL can also be estimated analyzing increments consisting of
groups fragment (or particles) sampled from the same lot. Some
form of stratified composite sampling mode should be used in or-
der to have a good representation of the full lot volume.
4.1. Short-range and long-range variance vs. increment size

1. If increments consisting of liberated particles are analyzed
individually, the manifestation of both long-range and the short
range-variance depends on increment size.

2. The sampling variance of a random lot, in which the sampling
increments consist of single particles, is the between-particle
variance, s2s and can be estimated from the lot heterogeneity:
s2s ¼ HIL

minc
.

3. If analyte particles within a heterogeneous lot are distributed as
forming more or less irregular patterns or trends (collectively
called segregation in the treatment below), and if increments
consist of more than one particle, the sampling variance now
depends on the increment size chosen, because segregation
affects both the within-increment variance as well as the
between-increments variance. In this case, the sampling vari-
ance, i.e., the between-increments variance now has three
components:

s2s ¼ HIL
minc

þ s2Seg þ s2LR:

HIL
minc

is the part of the sampling variance arising from the constitution

heterogeneity and is the ultimate smallest sampling variance that
can only be achieved, if the lot can be completely randomized before
sampling, [ HIL

mninc
þ s2Seg] is the within-increment variance or short-

range variance, s2SR [s2Seg is the part of segregation variance due

segregation within the increments] and s2LR is the contribution of
the within-lot segregation to the complete sampling variance.

The short-range variance (s2SR) cannot be predicted from the
constitution heterogeneity of the lot. The within-increment vari-
ance can be calculated from the analytical results stemming from
analyzing all fragments/particles within an increment; which is
possible in simulations (as is done here) but seldom in practice
(unless fragments are big, or few, relative to the whole lot).

The situation is slightly more complicated because of potential
in-situ heterogeneity, i.e., irregularly distributed analyte micro-
particles embedded within fragments. If these are liberated,
“grinding to completion”, this will add to the observable short-
ticulate materials with significant spatial heterogeneity - Theoretical
t sampling errors: Fundamental Sampling Error and Grouping and
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Fig. 6. Design of the Pitard's [20] experiment and preparation scheme of all derived
sub-samples: 1: A 340 kg composite sample was made up of increments collected from
50 random locations fully covering the mineralization (increment deployment
complying with FSP); 2: Splitting by fractional shoveling into four sub-groups; 3: One
68 kg sub-group was split into four sub-groups, each crushed to four different nominal
particle sizes (d); 4: Each of these four splits were crushed and pulverized to
d¼ 0.016 cm nominal particle size; 6: The pulverized 0.0106 cm samples were then
carefully mixed and from each of them 16 replicate 60 g composite samples were
made. Each composite sample consisted of 24 randomly picked increments; 7: These
60 g samples were divided into 30 g halves; 8: The whole 30 g was used in fire assay to
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range variance, but if grinding stops before these micro-particles
are liberated, their effect will be hidden, i.e. will be included in
the short-range variance s2SR. With experimental CHL and DHL (or
HI) values, it is now possible to test (approximately) if the sum of
the short-range segregation or within fragments variance and the
long-range variance is significant in comparison to the CHL:

F ¼ mn DHL

CHL
z

CHL þmn

�
s2Seg þ s2LR

�
CHL

(26)

If this F-test is significant, then the subtraction DHL � CHIL=mn

gives the estimate of the sum s2Seg þ s2LR for sample sizemn. This F-

test is only approximate however, because it assumes that
numerator and denominator arise from independent normally
distributed distributions. A better, modified F-test based on vario-
graphic experiments has been presented by Minkkinen [22].

Unlike the constitution heterogeneity CHL, the distribution
heterogeneity DHL is always affected if the lot is manipulated/
agitated e.g. by shaking, transportation, or by deliberate mixing.
Also, if the increment size is changed, DHL changes too, but unlike
the case of random distribution, this effect and its effect on the
variance of the estimate of the lot mean, estimated analyzing just a
part the lot cannot be predicted based on simple experiments with
a narrow increment size range. Further, the effects of GSE are
manifestly transient, i.e. varying without any tractable means.

Lastly, in the case of the distributional heterogeneity, the vari-
ance of the mean of several increments depends on the sampling
mode. Only if the ninc increments forming the lot are collected
randomly, following TOS' rules of correct (unbiased) sampling can
the sampling error (variance of the lot mean) be estimated as
s2ðhnÞ=ninc.

However, the effect of sampling mode can be estimated by
analyzing the results of a variographic experiment [3,15,18].
analyze the gold content of the samples. The figure shows the preparation of the
analytical samples only for one particle size group, but the other three groups were
processed in identical fashion.
4.2. Practical example: estimation of the segregation variance

The data analyzed in the example below are part from a study
published by Pitard [23]. In this experiment, a large composite
sample (340 kg) of gold bearing ore with an average content of
30.6 g/kg was made by picking 50 increments from a single type of
mineralization, subject to the Fundamental Sampling Principle
(FSP). The entire composite sample was crushed to �2 cm and
divided into four sub-samples by using fractional shoveling. In the
Pitard's experiment the data of which is analyzed here, one of these
sub-samples was further divided into four sub-splits. These were
each crushed or ground to four different nominal particle sizes and
subsequently divided again with a rotating sample divider into 16
sub-samples, which were pulverized to �0.106mm. From each of
these 16 pulverized samples, a 60 g composite sample was
composed by 24 randomly picked increments.

Finally, these 60 g samples were divided into two 30 g halves,
which were all analyzed by fire assay for gold. In total number of
fire assays was 128.

It pays to be attentive of the design for this experiment, Fig. 6, as
it illustrates several of the key stipulations for representative
sampling.

From each of the final duplicate analysis results, the mean and
variance were calculated. These variance estimates have just one
degree of freedom, but pooling them by calculating their mean a
variance estimate s21 with 16 degrees of freedom is obtained.

Another variance estimate s22 with 15 degrees of freedom is ob-
tained calculating the variance of the mean values of the duplicates.

Of these s21 is the estimate of the total analytical error variance
Please cite this article as: P.O. Minkkinen, K.H. Esbensen, Sampling of par
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including the splitting of the 60 g sample into duplicate 30 g sam-
ples submitted for the fire assay.

s21 ¼ s2TAE (E1)

s22 has three components: Long-range or between-increments
variance, short-range or within-increments variance and, because
duplicate analyses were made on each sample, the total analytical
variance divided by 2.

s22 ¼ s2LR þ s2SR þ
s2TAE
2

¼ s2Seg þ
s2TAE
2

(E2)

The significance of the segregation can now be tested:

F ¼ 2,s22
s21

¼
2,s2Seg
s2TAE

(E3)

If F is not significant, we can accept that s2Segz0. If it is signifi-

cant, we can estimate the segregation variance:

s2Seg ¼ s22 �
s2TAE
2

(E4)

From these calculations, we get the total variance of single
analysis of the 60 g samples
ticulate materials with significant spatial heterogeneity - Theoretical
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s2Tot ¼ s2Seg þ s2TAE (E5)

The laboratory that carried out the analysesmade public its own
estimate of the relative standard deviation of the fire assay as 2%
(s2TAE ¼ 0:022 ¼ 0:0004Þ. In this example, all 60 g samples were
analyzed twice (using the 30 g duplicates completely in fire assay)
giving the estimate of the total sampling variance:

s2samp ¼ DHL ¼ s2Tot �
s2TAE
2

¼ s2Seg (E6)

The analytical results and the estimation of s21 and s22 for all four
nominal particle size groups are presented in Tables 2ae2d and
summary of all calculation results in Table 3.

When the material was ground to nominal particle size
d¼ 0.15mm, the variance estimate s22 does not differ significantly

from s21, which indicates that at this particle size class the Au
nuggets in practice are liberated to such a degree that after this last
crushing, the fraction of particles still embedded in fragments with
a size below 0.15mm, did not result in a statistically different
variance estimate. In short, the crushing cascade has reached the
practical liberation size.

If the nuggets were randomly distributed in the matrix, the
expected number of Au nuggets/increment would be the same in
case the increment sizes are equal as in this experiment (60 g), i.e.
the expected number of nuggets randomly distributed in the ma-
trix depends only on the increment size. As this is not the case, this
is a clear indication of segregation so that some fragments contain
clusters of nuggets or some exceptionally large nuggets. This is
quite natural, since the majority of gold nuggets are found on the
crystal boundaries of the matrix minerals.

The nugget particle size in a binary liberated mixtures, where
gold nuggets and matrix particles have similar masses and where
the sampling variance is equal with this mineral mixture used in
the experiments, where estimated by using Gy's equation (Eq.
(23)):

d ¼
 

s2rSeg,ms

f g c

!1
3

(E7)

The following values were used: f¼ 0.15; g¼ 0.20; c¼
5:3,105 g=cm3 and ms¼ 60 g for the three coarsest size classes. As
in the finest size class, the segregationwas not significant, s2r1 gives
Table 2a
Gold example of two 30 g splits from a 60 g sample ground to nominal particle size d¼

Sample # SAMPLE A (ppm) SAMPLE B (ppm)

1 29.92 27.86
2 28.45 26.06
3 33.73 31.49
4 29.09 26.37
5 30.99 33.0
6 27.86 26.73
7 29.65 29.57
8 33.94 34.51
9 32.59 31.5
10 28.64 30.37
11 32.14 32.26
12 32.09 32.85
13 37.58 37.78
14 27.94 28.24
15 30.63 25.06
16 30.2 30.65
AVERAGE (ppm) and variance s21 (ppm2)
Variance s22 (ppm2)
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the contribution of the fundamental sampling error this size class.
The sample mass 30 g were used in estimating the nugget size,
0.148mm.

The variance of a random particle mixture is inversely propor-
tional to the expected number of particles of interest in the sample.
Therefore, if the sample size is kept constant, the expected variance
should not change whether the analyte particles are embedded in
the fragments or liberatedMinkkinen [18]. On the other hand, if the
variance increases with increasing fragment size it is a clear indi-
cation of some form of segregation of the analyte in the lot. Another
indication of segregation is that predicted particle size by using Eq.
(E7) is smaller than the fragment size and changes with the frag-
ment size.

There are important lessons to be learned from the present re-
analysis of the data from the Pitard [22] experimental data:

1. Segregation, whether within-fragment (short-range) or long-
range variation of concentration or within the original sam-
pling target, will affect the between increments variance.
Consequently, it is impossible to estimate without extensive
experiments how changing the fragment and increment size
will affect the segregation manifestations.

2. Full characterization of the heterogeneity pattern in 2-D and 2-D
targets is expensive. However, when fragment size is close to
liberation size, the predicted particle using Gy's equation is close
to the liberation size of the analyte-containing particle.

3. The so-called heterogeneity tests (HT) are popular in the min-
eral processing arena. However very great care has to be taken in
interpreting and utilizing HT results in planning subsequent
sampling plans. The reason is that standard HT's do not give
information as to the type of heterogeneity present, only the
magnitude, nor of possible autocorrelation. If experimental HT
results are used to estimate a required minimum sample mass,
or maximum particles size, in order to be within the required
sampling uncertainty decided upon, the results are not reliable
unless random or stratified random sampling modes are used
with particle and increment sizes identical to those that were
used in the heterogeneity test itself.
5. Grouping and segregation factors, y and z e new derivation

When increments are taken from a lot, every removed incre-
ment in principle changes the average concentration of the
remaining part of the lot, the more the larger the removed
1.35 cm. Data part from Pitard's experiment [23].

Mean([Ai;Bi]) (ppm) var([Ai;Bi]) (ppm2)

28.89 2.12
27.26 2.86
32.61 2.51
27.73 3.70
32.00 2.02
27.30 0.64
29.61 0.003
34.22 0.162
32.05 0.594
29.51 1.50
32.2 0.007
32.47 0.289
37.68 0.020
28.09 0.045
27.84 15.51
30.43 0.101
30.62 2.005
9.055
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Table 2b
Gold example of two 30 g splits from a 60 g sample ground to nominal particle size d¼ 0.43 cm. Data part from Pitard's experiment [23].

Sample # SAMPLE A (ppm) SAMPLE B (ppm) Mean([Ai;Bi]) (ppm) var([Ai;Bi]) (ppm2)

1 34.26 33.08 33.67 0.696
2 32.05 30.65 31.35 0.980
3 32.28 32.62 32.45 0.058
4 31.99 31.14 31.56 0.361
5 31.15 29.8 30.47 0.911
6 34.98 29.38 32.18 15.68
7 31.19 32.13 31.66 0.441
8 32.01 30.87 31.44 0.650
9 31.05 30.75 30.9 0.045
10 31.23 33.54 32.39 2.668
11 38.64 34.36 36.5 9.159
12 33.11 32.69 32.9 0.088
13 33.08 33.15 33.11 0.0025
14 34.43 32.87 33.65 1.217
15 33.35 31.74 32.55 1.296
16 32.01 32.83 32.42 0.336
AVERAGE (ppm) and variance s21 (ppm2) 32.45 2.162
Variance s22 (ppm2) 2.143

Table 2c
Gold example of two 30 g splits from a 60 g sample ground to nominal particle size d¼ 0.135 cm. Data part from Pitard's experiment [23].

Sample # SAMPLE A (ppm) SAMPLE B (ppm) Mean([Ai;Bi]) (ppm) var([Ai;Bi]) (ppm2)

1 32.41 32.39 32.4 0.0001
2 32.19 29.81 31.0 2.832
3 29.78 32.84 31.310 4.682
4 29.99 28.58 29.285 0.994
5 33.13 34.54 33.835 0.994
6 32.09 30.22 31.155 1.749
7 29.88 28.55 29.215 0.884
8 32.78 31.97 32.375 0.328
9 28.98 28.85 28.915 0.0084
10 32.41 30.7 31.555 1.462
11 32.98 31.33 32.155 1.361
12 32.76 30.97 31.865 1.602
13 33.64 31.4 32.52 2.509
14 35.43 39.62 37.525 8.778
15 31.48 32.54 32.01 0.562
16 31.5 31.22 31.36 0.0392
AVERAGE (ppm) and variance s21 (ppm2) 31.78 1.799
Variance s22 (ppm2) 4.370

Table 2d
Gold example of two 30 g splits from a 60 g sample ground to nominal particle size d¼ 0.015 cm. Data part from Pitard's experiment [23].

Sample # SAMPLE A (ppm) SAMPLE B (ppm) Mean([Ai;Bi]) (ppm) var([Ai;Bi]) (ppm2)

1 34.2 33.71 33.99 0.120
2 33.99 33.55 33.77 0.097
3 32.76 32.63 32.70 0.0084
4 34.49 33.91 34.2 0.168
5 36.41 33.95 35.18 3.026
6 31.03 33.54 32.29 3.15
7 31.69 34.34 33.02 3.511
8 33.09 32.31 32.7 0.304
9 34.2 33.14 33.67 0.562
10 33.73 33.62 33.67 0.0060
11 32.92 34.26 33.59 0.898
12 34.63 32.7 33.67 1.862
13 33.18 35.01 34.10 1.674
14 32.6 35.35 33.98 3.781
15 31.66 33.67 32.66 2.020
16 33.16 32.75 32.96 0.084
AVERAGE (ppm) and variance s21 (ppm2) 33.51 1.330
Variance s22 (ppm2) 0.590
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increments are in comparison to the whole lot. This effect is of
course not significantly influential as long as the extracted incre-
ment mass is much smaller than the lot mass, i.e. under normal
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primary sampling in science technology and industry.
However, if size of the increments removed are significant in

comparison to the lot size (small lots on the laboratory bench, e.g.,
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Table 3
Summary of variance estimate calculations. Variance and standard deviation values
are given as absolute and relative values. P(F) gives the cumulative probability of F-
distribution at the test value; dest is the estimated particle size of an equivalent binary
mixture of gold nuggets and matrix having the same sampling variance with the
gold ore used in the experiments.

Quantity Nominal Particle Sizes (mm) Average

13.5 4.3 1.35 0.15

Average (ppm) 30.62 32.45 31.78 33.51 32.09
s21 (ppm2) 2.005 2.162 1.799 1.330 1.824
s2r1 0.00185 0.00194 0.00159 0.00118 0.00164

sr1 (%) 4.30 4.41 3.99 3.44 4.05
s22 (ppm2) 8.451 2.000 4.078 0.551
s2r2 0.00779 0.00180 0.0036 0.00049

sr2 (%) 8.82 4.24 6.00 2.21
F-test 8.43 1.85 4.53 0.83
P(F)< p 0.999 0.88 0.998 0.36
s2Seg (ppm2) 7.45 0.919 3.1 8 z0
s2rSeg 0.00686 0.000826 0.00281 z0

srSeg (%) 8.28 2.87 5.30 z0

s2rðtotÞ 0.0870 0.00277 0.00440 0.00108

srðtotÞ (%) 9.33 5.26 6.62 3.29
dest (mm) 1.67 0.205 0.692 0.148
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in connection with sample preparation or bona fide riffle, where
the resulting sub sample is half of the lot splitting; in the phar-
maceutical industry example exist, where the entire product lot of a
highly specialized, extremely expensive compound was of the or-
der of seven grams) this effect has to be taken into account when
the short-range grouping effect is estimated, Sommer [24].

If the analyte distribution in the lot is random and increments of
nf fragments are extracted (single fragment, group of (or grab) of
several fragments or a composite sample is made of nf randomly
picked individual fragments or groups of fragments), the increment
mass and number effects on the lot mean can be predicted. The lot
mean (aL) is calculated as the mean of the extracted ninc increments
and its variance is

s2aL ¼
s2s
ninc

NL�
NL � 1

¼ y s2s (27)

s2s is the sampling variance of the increment, which can be esti-
mated empirically analyzing the individual increments or, if the
necessary data is available, from heterogeneity s2s ¼ s2FSE ¼HIL/
minc.

From this the definition of our proposed modified grouping
factor, y, is

y ¼ 1
ninc

NL � ninc
NL � 1

(28a)

The average fragment mass is mf , NL is the total number of
fragments in the lot and ninc the number of fragments in the single
increment or in the composite sample: NL ¼ mL

mf
, total sample mass

ms ¼ nf mf . Using these relationships the following equality can be
derived, in which these numbers are replaced by the equivalent
masses. Now y is expressed as a function of the masses of the lot,
increment and fragment, respectively.

y ¼ 1
ninc

 
mf

mf

!
NL � ninc
NL � 1

¼ 1
ninc

mf ,NL �mf ,ninc
mf ,NL �mf

¼ 1
ninc

mL �minc

mL �mf
(28b)
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If ninc¼ 1, and minc, is a multiple of mf Eq. (27) with y calculated
from Eq. (28b) gives the dependence of the sampling variance
(variance between analyzed increments) as function of increment
mass.

The following approximations can be made from Eq. (28) under
the given conditions:

1) If the whole lot is taken as the sample, mL ¼ ninc, minc ¼ ms;

mL � ms ¼ 0 and y ¼ 0, and, consequently, also the sampling
error is zero.

2) If

mL[mf then mL �mfzmL and yz
1

ninc

mL �minc

mL
: (28c)

In Table 4 this approximation is compared to the exact formula.
The table shows that this is an applicable approximation in most
practical cases.

3) If the lot is large in comparison to the total sample size (the usual
situation in sampling),

mL[minc and mL[mf ; yz
1

ninc
; (28d)

which leads to an assumption used in standard statistics: The
variance of an increment (composite sample) is the variance of the
fragments divided by the number of fragments.

The results given in Table 4 show that only a small error is made
by using this approximation when the increment size is less than,
say, 2% of the lot. This is the case in most practical situations when
primary sampling is carried out.

But when laboratory sub-samples are made, especially at the
end of the full ‘lot-to-aliquot’ pathway, typical mass reduction is
carried out splitting contemporary sub-samples into 2e10 parts
only (lower part of Table 4), of which one, or a few, are selected as
aliquots to be analyzed. In these cases, it is critical to consider the
grouping effect correction.

If the heterogeneity invariant for a particular material to be
sampled can be estimated, the theoretical variance of an increment
is

s2inc ¼
HIl
minc

mL �minc

mL
(29)

Figs. 3 and 4 showed the effect of different heterogeneity types
on the sampling variance. For a given increment size (minc), DHL is
the corresponding sampling variance.

Following the formalism laid down in standard TOS (outlined
above), by multiplying the grouping factor with the modified
segregation factor z (still representing the segregation status of the
material), the following equality is valid:

DHL ¼ z,y,s2FSE (30)

From this follows an alternative formulation of the segregation
factor as

z ¼ DHL

y,s2FSE
¼ DHL

y,CHL
(31)

If we compare Eq. (30) with Gy's original equation (Eq. (23)), we
see that by using this new definition, the liberation factor b is
formally equal to the new segregation factor z. The difference to
Gy's liberation and segregation factor is that z explains the com-
bined effect of liberation and segregation. Now, if a reference
variance (s2FSE) can be estimated, either theoretically from known
ticulate materials with significant spatial heterogeneity - Theoretical
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Table 4
Dependence of the grouping factor correction term (exact:

mL �minc

mL �mf
and approximation:

mL �minc

mL
) on the relative size of increment taken from the lot. Correction

application field (grey).
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properties of a particle mixture or experimentally, e.g., grinding or
crushing a solid material close to the liberation size of the analyte
containing particles, z can be estimated as function of the incre-
ment or fragment size.

If the increments sampled are larger than single analyte parti-
cles, Gy's equation gives a general equation of the distribution
heterogeneity that can be written for random mixtures as function
of the sample mass:

DHLðmsÞ ¼ HIL
ms

�
1
ms

� 1
mL

�
¼ f ,g,b,c,d3

�
1
ms

� 1
mL

�
(32)

If the particles are fully liberated, and there is no segregation,
b ¼ 1 and

DHLðmsÞ ¼ f ,g,c,d3
�

1
ms

� 1
mL

�
¼ y,s2FSE (33)

In case there is any type of segregation, bs1 and this is taken
account by the new segregation factor:

DHLðmsÞ ¼ z,f ,g,c,d3
�

1
ms

� 1
mL

�
¼ z,y,s2FSE (34)

In the gold experiment example above ms¼ 30 g and
mL¼ 16,30 g results in the grouping factor value
y ¼ 1

ms
� 1

mL
¼ 0:3125 g�1:When the ore was ground to the nominal

particle size d¼ 0.015 cm that particle size group did not show
significant segregation, so DHL ¼ s2r1 ¼ 0:00118 in that group and

s2FSE ¼ s2r1=y ¼ 0:0377 (Eq. (27)). For the other groups DHL ¼ s2rSeg
and, from Eq. (26), z ¼ s2rSeg=ðy,s2FSEÞ. That gives following values for

the segregation factor in the other size groups: d¼ 0.135 cm,
z¼ 2.38; d¼ 0.43 cm, z¼ 7.00; and d¼ 1.35 cm, z¼ 5.81.

If the distribution of gold nuggets in the matrix rock is random,
the predicted sampling variance due to pure grouping effect is
s2group ¼ y s2FSE . If/when there is segregation, the observed sampling
variance is larger than predicted. To obtain the segregation effect
the grouping variance has to be multiplied by segregation factor z.
The segregation factor z thus gives the ratio of segregation effect to
pure grouping effect. This constitutes a physical framework for
interpreting the different z's in the different size groups in the
above gold sampling experiment; there are different contrasts of
grouping and segregation manifestations in the different size
classes. It is very, very difficult to crush irregular, originally strongly
heterogeneous materials to a comparable status in decreasing size
class ranges, especially when the analyte is made up of malleable
gold particles.
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6. Estimation of variance of the lot mean

In standard statistics, the variance of the lot mean of n samples
analyzed is obtained by dividing the measurement variance s2tot by
the number of samples:

s2aL ¼
s2tot
n

(35)

This relationship holds only, if the distribution of the analyte is
truly random.

If the lot material is segregated, the experimental variance es-
timate, e.g., DHL, depends on the size of the sampled increments.
Consequently, Eq. (35) is valid depending on two conditions:

1) The increment size is identical to that used in estimating the
measurement variance, and

2) The lot was randomized before sampling (or virtually random-
ized by taking the increments randomly so that each potential
increment of the lot had an equal chance to be extracted as a
sample).

Another point to remember is that when there is segregation
there is also auto-correlation between the increments, at least
within some distance (range). In auto-correlated series the variance
of the lot mean, i.e. the sampling error, depends on the sampling
mode (random, stratified or systematic). Variography is a powerful
approach to estimate the effect of the sampling modes in auto-
correlated series, Minkkinen [18,22]. Esbensen et al. [25,26,28] and
Minkkinen et al. [27] present a comprehensive illustration of these
features for the case sampling for GMO quantitation from port
offloading in which all degrees of ship's cargo heterogeneities was
experienced. This example illustrates a reference case(s) in which
analyte distribution is anything but uniform, the KeLDA GMO study
[26e28] is a very realistic, didactic case history narrowly paralleling
the present treatise.

If the analyte distribution is random however, the variance of
the increments can be explained by the grouping effect alone (there
is no segregation), i.e. DHL ¼ y,CHL and from this follows that at
this extreme, for completely random (i.e., non-segregated) lots,
z¼ 1. At the opposite end of the spectrum of heterogeneity, corre-
sponding to extreme segregation (Fig. 3, heterogeneity pattern 4),
the distribution heterogeneity is equal to the constitution hetero-
geneity and therefore here z¼ 1/y.

With respect to TOS' original Y and Z definitions, only the nu-
merical running intervals for these factors are changed, while their
phenomenological meanings are the same:
ticulate materials with significant spatial heterogeneity - Theoretical
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Original TOS Modified TOS (present)
Y (grouping factor) [1; ∞] y

�
1;

1
ninc

NL � ninc
NL � 1

z
1

ninc
; ifNL[ninc

	
Z (segregation factor) [0; 1] Z [1; (1/Y z ninc; ifNL[ninc)]
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Between these extreme end values, the new segregation factor z
depends on the actual distribution, as shown in Figs. 3 & 4.

The grouping factor y can be estimated for materials consisting
of specific particles, if the mixture composition is known using the
theoretical sampling error models, e.g. Gy's equation, (Eq. (23)).
That is the case, e.g. in laboratory when mixtures are made for
calibrating analytical instruments and in some other cases where
small sampling targets are investigated.

7. Theory vs. practice

While CH, DH andHI are theoretically necessary concepts in TOS,
their use in practice is limited. Before expensive sampling cam-
paigns on large stationary lots are designed, pilot studies (e.g.,
replication experiments) on smaller scales in order to optimize the
final sampling plan are strongly recommended. From the results of
a well-designed pilot study, DH can be estimated reliably. If the
sampling plan is made in order to estimate the mean concentration
of the lot, the grouping and segregation factors, y and z, and the
estimated variance of the lot mean are valid only if random (or
stratified random) sampling is used, and the increment size used is
the same as in the pilot study.

However, in sampling small lots like in preparing analytical
samples from the primary samples CH, DH and HI are useful
concepts.

If segregation, due clustering, linear drift and/or cyclic variations
within the lot is a significant component of the sampling variance,
that is a clear indication of auto-correlation in the lot, at least
within some time interval or distance range. In auto-correlated
series, the measurement uncertainty, the variance of the mean,
depends on both the sampling mode, the increment size and
number of increments analyzed. For such, significantly heteroge-
neous lots, the only resort is to empirical total sampling error
estimation (TSE), by either Replication Experiments or variographic
characterization [12,13]. This can then be guided by the theoretical
derivations above.

As always, it is strongly advisable first to reduce, or eliminate
fully, all Incorrect Sampling Error (ISE) effects so that the critical
sampling variance estimates can become valid and reliable, lest the
effects of the inconstant sampling bias will dominate unduly, and in
most cases make all the estimations outlined above irrelevant
[3,4,6e8,10,13,15].

In a recent “refutation” of Esbensen&Wagner [13], Ramsay [29]
managed to read most of the Theory of Sampling in a manifest
negative and ill-informed fashion, disregarding all of the above
heterogeneity vs. sampling mode inter-dependencies - with a fatal
result. The present paper can also be seen as a fundamental un-
derpinning of a countermand to [29], which will be published
separately elsewhere. In this context also the broad mathematical
modelling reflections offered by Francois-Bongarcon [30] plays a
central role.

8. Conclusions

1. There is complete command over all sampling errors only for an
ideal lot with a random distribution of the analyte, subjected to
ideal sampling, i.e., extraction of one fragment at the time,
independently, with free access across the entire lot volume. In
Please cite this article as: P.O. Minkkinen, K.H. Esbensen, Sampling of par
modification of grouping and segregation factors involved with correc
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this ideal case the only sampling error is s2FSE which is a bona
fide estimate also of DHL. This is the only case for which the
original “Gy's Formula” was derived. The binomial and Poisson
distributions offer some insight in this case, but for two com-
ponents only [analyte, matrix]. Crucially there is no possibility
for generalization to any other, more realistic lot type(s). This
point is often overlooked.

2. There has been an ill-reflected, often unrecognized, extensive
abuse of Gy's Formula during the entire history of applied TOS, it
being all too liberally applied to almost any aggregate material
conceivable (many material classes of widely different compo-
sitions with significant (to large, or extreme) fragment size
distribution heterogeneity. This abuse regimen is for the most
part characterized by the lack of fundamental TOS under-
standing and competence; the most recent misconstruction of
TOS is in Ref. [29]. The present paper is a strong warning against
this practice, as is Francois-Bongarcon [30].

3. In any type of a realistic lot, non-randomness (segregation,
grouping, linear drift and/or cyclic variations) will produce sig-
nificant effects stemming from the complementary GSE. Possible
combinations of GSE effects, stemming from a specific sampling
mode interacting with a specific lot heterogeneity, are so many
[1]) so many that GSE cannot be encapsulated in an easy
mathematical dressing (like for FSE). In dynamic lots and lot
which are manipulated the GSE effects are transient, which
further complicates attempts to generalize the estimation of
their magnitudes.

4. For significantly heterogeneously lots (all the world's realistic
sampling targets) only empirical TSE estimations are possible,
e.g., a Replication Experiment (for stationary lots) or a vario-
graphic characterization (for process sampling).

5. For sampling in which the intended sample mass is close to the
total lot mass (2e10%, or more) the presently derived grouping
factor correction term (exact: mL�minc

mL�mf
and its approximation:

mL�minc
mL

) is critically necessary and mandated.
6. The modified y and z factors still function in a manner similar to

the phenomenological factors Y and Z in standard TOS, but the z
factor now represents the combined, more realistic effect of
liberation and segregation combined. We submit this gives an
easier path into the core intricacies of certain details of TOS
needed when more than standard primary sampling is on the
agenda, i.e. when the sampling increment size is, or has to be, a
substantial fraction of the total lot mass. This is always the case
at the terminal end of the ‘lot-to-aliquot’ pathway and which
also characterizes some so-called ‘sampling cells’ solutions
offered in Process Analytical Technologies (PAT). Another
advantage is, as the worked out examples showed, that using y
and z the combined effect of the liberation and segregation can
be quantitatively estimated from sampling experiments as
function or the increment size. Estimates of HIL or CHL are
needed and these also can be estimated experimentally, or
theoretically from the known composition of the material to be
sampled.
Declarations of interest

None.

Acknowledgements

PMwants to express his gratitude to Lappeenranta University of
Technology for allowing to use the facilities of the university in his
research at Professor emeritus status. The authors thank profusely
the estate Holm Moelle, Denmark for support on so many levels e
ticulate materials with significant spatial heterogeneity - Theoretical
t sampling errors: Fundamental Sampling Error and Grouping and
18.10.056



P.O. Minkkinen, K.H. Esbensen / Analytica Chimica Acta xxx (xxxx) xxx18
all hail to Dorthe and Niels Kjaer.

References

[1] P. Minkkinen, K.H. Esbensen, Grab vs. composite sampling of particulate
materials with significant spatial heterogeneity - a simulation study of “cor-
rect sampling errors”, Anal. Chim. Acta 653 (2009) 59e70.

[2] P.M. Gy, Erforderliche Probemenge-Kurvetafeln (Minimum sample massd-
graphs and curves), Int. Kongress Erzaufbereitung 8 (1955) B 199eB 220.
Third International Mineral Processing Congress, Goslar, Germany, May 1955.
Erzmetall.

[3] P.M. Gy, Sampling of Heterogeneous and Dynamic Material Systems, Elsevier,
Amsterdam, 1992.

[4] P.M. Gy, Sampling for Analytical Purposes, John Wiley & Sons Ltd, Chichester,
1998.

[5] R.C.A. Minnit, The cost of sampling errors and bias to the mining industry, TOS
Forum 8 (6) (2018) 32e34, https://doi.org/10.1255/tosf.106.

[6] P.M. Gy, Sampling of discrete materials e a new introduction to the theory of
sampling I. Qualitative approach, in: K.H. Esbensen, P. Minkkinen (Eds.),
Special Issue: 50 Years of Pierre Gy's Theory of Sampling. Proceedings: First
World Conference on Sampling and Blending (WCSB1). Tutorials on Sampling:
Theory and Practise, Chemom. Intell. Lab. Syst., vol. 74, 2004, pp. 7e24.

[7] P.M. Gy, Sampling of discrete materials e II. Quantitative approach - sampling
of zero-dimensional objects, in: K.H. Esbensen, P. Minkkinen (Eds.), Special
Issue: 50 Years of Pierre Gy's Theory of Sampling. Proceedings: First World
Conference on Sampling and Blending (WCSB1). Tutorials on Sampling: The-
ory and Practise, Chemom. Intell. Lab. Syst., vol. 74, 2004, pp. 25e38.

[8] P.M. Gy, Sampling of discrete materials e III. Quantitative approach - sampling
of one-dimensional objects, in: K.H. Esbensen, P. Minkkinen (Eds.), Special
Issue: 50 Years of Pierre Gy's Theory of Sampling. Proceedings: First World
Conference on Sampling and Blending (WCSB1). Tutorials on Sampling: The-
ory and Practise, Chemom. Intell. Lab. Syst., vol. 74, 2004, pp. 39e47.

[9] P.M. Gy, Part IV: 50 years of sampling theory e a personal history, in:
K.H. Esbensen, P. Minkkinen (Eds.), Special Issue: 50 Years of Pierre Gy's
Theory of Sampling. Proceedings: First World Conference on Sampling and
Blending (WCSB1). Tutorials on Sampling: Theory and Practise, Chemom.
Intell. Lab. Syst., vol. 74, 2004, pp. 49e60.

[10] F.F. Pitard, D. Francois-Bongarcon, Demystifying the fundamental sampling
error and the grouping and segregation error for practitioners, in: Proceedings
World Conference on Sampling and Blending 5 (WCSB5), Santiago, Chile,
2011, pp. 39e56.

[11] G. Matheron (author), F.F. Pitard, D. Francois-Bongarcon (translators), Com-
parison between samples with constant mass and samples with constant
fragment population size [and calculations of their sampling variances], in:
K.H. Esbensen, C. Wagner C. (Eds.), Proceedings of the 7th World Conference
on Sampling and Blending. TOS Forum, vol. 5, 2015, pp. 231e238.

[12] DS 3077, Representative Sampling - Horizontal Standard, Danish Standards,
2013. www.ds.dk.

[13] K.H. Esbensen, C. Wagner, Theory of sampling (TOS) versus measurement
uncertainty (MU) e a call for integration, Trends Anal. Chem. 57 (2014)
93e106.

[14] K.H. Esbensen, Materials properties: heterogeneity and appropriate sampling
modes, J. AOAC Int. 98 (2015) 269e274. https://doi.org/10.5740/jaoacint.14-
234. in: K. H. Esbensen, C. Paoletti, N. Theix, Representative Sampling for
Food and Feed Materials: a Critical Need for Food/feed Safety. J. AOAC Int. 98,
(2015).
Please cite this article as: P.O. Minkkinen, K.H. Esbensen, Sampling of par
modification of grouping and segregation factors involved with correc
Segregation Error, Analytica Chimica Acta, https://doi.org/10.1016/j.aca.20
[15] F.F. Pitard, Pierre Gy's Sampling Theory and Sampling Practice, second ed., CRC
Press LLC, Boca Raton, USA, 1993.

[16] M. Ramsey, Contaminated land: cost-effective investigation within sampling
constraints, in: P. Potts, M. West (Eds.), Portable X-ray Fluoresence Spec-
trometry: Capabilities for in Situ Analysis, RCS Publ., 2008, 39e555. ISBN 978-
0-85404-552-5.

[17] P. Minkkinen, Weighting error e is it significant in Process analysis? in:
J.F. Costa, J. Koppe (Eds.), WCBS3, Third World Conference on Sampling and
Blending, 22-25 October, 2007, Porto Alegre, Brazil, Conference Proceedings,
Publication Series Fundac~ao Luis Englert No. 1, 2007, pp. 59e68. ISBN:987-85-
61155-00-1.

[18] P. Minkkinen, Dependence of the variance of lot average on the sampling
mode and heterogeneity type of the lot, in: S.C. Dominy, K.H. Esbensen (Eds.),
Proceedings of the 8th World Conference on Sampling and Blending, 8 e 11
May, 2017, Perth, Australia, the Australian Institute of Mining Metallurgy
Publication Series 2, 2017, pp. 319e330. ISBN 978 925100 56.

[19] R.C.A. Minnit, A generalized form of Gy's equation for gold ores eempirical
evidence, in: S.C. Dominy, K.H. Esbensen (Eds.), Proceedings of the 8th World
Conference on Sampling and Blending, 8 e 11 May, 2017, Perth, Australia, the
Australian Institute of Mining Metallurgy Publication Series 2, 2017,
pp. 331e342. ISBN 978 925100 56.

[20] G.J. Lyman, Variograms: properties and estimation, in: Proceedings, 6th World
Conference on Sampling and Blending, 19-22 November, 2013, pp. 185e206.
Lima, Peru.

[21] P. Minkkinen, Properties of process variograms, in: Proceedings, 6th World
Conference on Sampling and Blending, 19-22 November, 2013, pp. 241e248.
Lima, Peru.

[22] P. Bedard, K.H. Esbensen, S.-J. Barnes, Empirical approach for estimating
reference material heterogeneity and sample minimum test portion mass for
“nuggety” precious metals (Au, Pd, Ir, Pt, Ru), Anal. Chem. 88 (2016)
3504e3511, https://doi.org/10.1021/acs.analchem.5b03574.

[23] F.F. Pitard, Effect of residual variances on the estimation of the variance of the
Fundamental Error, Chemometr. Intell. Lab. Syst. 74 (2004) 149e164.

[24] K. Sommer, Probenahme von Pulvern und k€ornigen Massengütern, Springer
Verlag, Berlin, 1979, pp. 85e126.

[25] K.H. Esbensen, P. Mortensen, Process sampling (theory of sampling, TOS) e
the missing link in process analytical technology (PAT), in: K.A. Bakeev (Ed.),
Process Analytical Technology, second ed., Wiley, 2010, ISBN 978-0-470-
72207-7, pp. 37e80, 2016.

[26] K.H. Esbensen, C. Paoletti, P. Minkkinen, Representative sampling of large
kernel lots e I. Theory of Sampling and variographic analysis, Trends Anal.
Chem. 32 (2012) 154e165, https://doi.org/10.1016/j. trac.2011.09.008.

[27] P. Minkkinen, K.H. Esbensen, C. Paoletti, Representative sampling of large
kernel lots e II. Application to soybean sampling for GMO control, Trends
Anal. Chem. 32 (2012) 166e178, https://doi.org/10.1016/j.trac.2011.12.001.

[28] K.H. Esbensen, C. Paoletti, P. Minkkinen, Representative sampling of large
kernel lots e III. General Considerations on sampling heterogeneous foods,
Trends Anal. Chem. 32 (2012) 179e184, https://doi.org/10.1016/
j.trac.2011.12.002.

[29] M.H. Ramsay, Appropriate sampling for optimised measurement (ASOM)
rather than the theory of sampling (TOS) approach, to ensure suitable mea-
surement quality: a refutation of Esbensen &Wagner, Geostand. Geoanal. Res.
40 (2016) 571e581, https://doi.org/10.1111/ggr.12121.

[30] D. Francois-Bongarcon, Mathematical modelling and TOS, in: Proceedings 5th
World Conference on Sampling and Blending (WCSB5), October 25-28, San-
tiago, Chile, 2011, ISBN 978-956-8504-59-5, pp. 407e416.
ticulate materials with significant spatial heterogeneity - Theoretical
t sampling errors: Fundamental Sampling Error and Grouping and
18.10.056

http://refhub.elsevier.com/S0003-2670(18)31298-4/sref1
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref1
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref1
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref1
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref2
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref2
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref2
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref2
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref2
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref2
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref3
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref3
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref4
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref4
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref4
https://doi.org/10.1255/tosf.106
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref6
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref6
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref6
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref6
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref6
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref6
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref6
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref7
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref7
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref7
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref7
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref7
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref7
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref7
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref8
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref8
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref8
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref8
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref8
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref8
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref8
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref9
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref9
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref9
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref9
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref9
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref9
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref9
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref10
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref10
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref10
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref10
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref10
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref11
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref11
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref11
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref11
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref11
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref11
http://www.ds.dk
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref13
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref13
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref13
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref13
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref13
https://doi.org/10.5740/jaoacint.14-234
https://doi.org/10.5740/jaoacint.14-234
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref15
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref15
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref16
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref16
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref16
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref16
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref16
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref17
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref17
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref17
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref17
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref17
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref17
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref17
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref17
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref18
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref18
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref18
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref18
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref18
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref18
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref18
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref19
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref19
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref19
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref19
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref19
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref19
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref19
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref19
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref19
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref19
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref20
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref20
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref20
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref20
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref21
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref21
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref21
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref21
https://doi.org/10.1021/acs.analchem.5b03574
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref23
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref23
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref23
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref24
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref24
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref24
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref24
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref25
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref25
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref25
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref25
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref25
https://doi.org/10.1016/j. trac.2011.09.008
https://doi.org/10.1016/j.trac.2011.12.001
https://doi.org/10.1016/j.trac.2011.12.002
https://doi.org/10.1016/j.trac.2011.12.002
https://doi.org/10.1111/ggr.12121
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref30
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref30
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref30
http://refhub.elsevier.com/S0003-2670(18)31298-4/sref30

	Sampling of particulate materials with significant spatial heterogeneity - Theoretical modification of grouping and segrega ...
	1. Introduction
	1.1. Summary of earlier studies
	1.2. Scope of present paper

	2. TOS – a brief
	2.1. Homogeneity – heterogeneity – sampling errors
	2.2. Theoretical nexus of TOS
	2.3. TOS' definition of CHL and DHL
	2.3.1. Y and Z
	2.3.2. The critical role of increment size
	2.3.3. Dependence of the between-increments variance on increment size and heterogeneity type


	3. Modified theoretical formulation, CH and DH
	3.1. Constitution heterogeneity, CH
	3.2. Distribution heterogeneity, DHL
	3.3. Binary mixtures: a special case
	3.3.1. “Gy's formula”


	4. Practical sampling of heterogeneous lots
	4.1. Short-range and long-range variance vs. increment size
	4.2. Practical example: estimation of the segregation variance

	5. Grouping and segregation factors, y and z – new derivation
	6. Estimation of variance of the lot mean
	7. Theory vs. practice
	8. Conclusions
	Declarations of interest
	Acknowledgements
	References


