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This feasibility study evaluates an approach for prediction of sandstone plug porosity and permeability based on
low-angle illumination imaging, the Angle Measure Technique (AMT) and chemometric multivariate calibration/
validation. The AMT approach transforms 2-D texture images of drill core plug ends into 1-D ‘complexity spectra’
in which inherent porosity- and permeability-correlated features are subsequently extracted and subjected to
multivariate calibration modelling. A training data set was selected because of its wide-spanning porosity and
permeability ranges allowing evaluation of realistic prediction performance for typical North Sea/Scandinavian
sandstone oil/gas reservoir rocks. This first study makes use of sand stone plugs from a single drill core from the
Danish underground. Contingent upon proper test set validation (deliberately not deleting a few small, potential
outliers), prediction performance assessment were for porosity [%] slope: 0.86; RMSEP: 2.2%; R = 0.90 and for
permeability [mDarcy]: slope: 0.91; RMSEP: 458 mDarcy; R2 = 0.87, which translates into RMSEPy; of 12% and
19% respectively. These results pertain to a typical, well-spanning training data set (18 sandstone plugs); it is
therefore concluded that the AMT approach to poro-perm prediction from images is feasible, but further, extended
calibrations must be based on a more comprehensive training data sets covering the full geological regime of

reservoir sandstones. We discuss possible application potentials and limitations of this approach.

1. Introduction

The present project is a feasibility study of the possibilities, and
constraints, of a method for prediction of porosity and permeability from
images of routine sandstone drill core plugs as used intensively in the oil/
gas industry for physical measurements. This approach, if properly
validated and accepted, could for example find use as a screening com-
plement to such routine poro-perm determination in the core laboratory
a.o.

The present feasibility study is only directed towards outlining if, and
if so, to which degree it is possible to predict sandstone porosity and
permeability based on texture image analysis in the form of AMT, com-
bined with multivariate calibration PLS-regression. The perfunctory test
set validation used allowed estimation of a realistic prediction error for
both sandstone parameters. This is not an optimization study directed at
comparing alternative image analytical texture transforms, of which one
could find many e.g. Grey Level Co-Occurrence Matrix (GLCM), Wavelet

Texture Analysis (WTA). It was found prudent to resolve the basic
feasibility objective first. The results reported here are not likely to be the
final optimal characteristics, so much interesting follow-up work can be
expected.

Solymar and Fabricius [1] and Cipolloni et al. [2] have previously
shown that porosity and permeability can be determined using classical
image analysis and statistics. Coskun & Wardlaw [3,4] proposed an
empirical image analytical method which describes how porosity and
permeability influences water saturation in sand stone core plugs. The
results indicate that the increasing volume of well-connected pores and
increase in pore size uniformity improve recovery efficiency. James [5]
showed that petrographic image analysis was suitable for characteriza-
tion of fluid-flow pathways in a sand stone reservoir. His findings showed
how the porous microstructure of a reservoir can explain the dynamic
flow behavior in and around a production well.

The Angle Measure Technique (AMT) was introduced in 1994 by
Robert Andrle [6] as a new method for characterising geomorphic lines
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where relevant ‘complexity features’ are extracted as a function of a
scaling parameter S. In 1996 Esbensen et al. [7] introduced the AMT
approach in a broader generic sense as a promising method also in many
technological applications. By combining AMT with chemometrics, they
showed the potential of AMT for texture analysis in images. Kvaal et al. [8]
compared five feature extraction techniques for characterisation of sen-
sory porosity from texture images of bread; singular value decomposition
SVD, auto-correlation and auto-covariance functions ACF and the
so-called size and distance distribution SDD. In this study bread was used
as a stand in proxy for many other types of materials with a characteristic
pore void/matrix texture with a perhaps more significant impact in sci-
ence, technology and industry. It was concluded that AMT was the best
method for extracting sensory-related porosity measures from images.

From the beginning in the mid-1990’s, multiple research projects
based on the AMT method have subsequently been conducted and
reported.

A significant number of publications have focused on method devel-
opment and improvement of the angle measure technique [6-8,11,15,16,
19,20]. A software package for AMT has been implemented in recent
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years and is available upon request [15]. The application areas of AMT
span from powder technological particle characteristics such as porosity,
size, shape etc. [7-10,12,14] to medicine [13], food science [7,8,17,21]
and forensic studies [18,23]. The latest evaluation of AMT in a waste
water treatment plant study has shown that the use of AMT in optimi-
zation of coagulants is a highly relevant method [22].

Esbensen et al. [7] and Kvaal et al. [8] applied multivariate modelling
of AMT spectra of texture images and it was concluded that AMT was
successful to extract relevant features for reliable prediction of porosity.
AMT for quantification of permeability was proposed by Huang et al.
[10] where AMT was applied to images of powder to quantify various
bulk powder properties. However, it was concluded that it was not
possible to predict permeability of the food related powders investigated
in that study.

On this basis it was decided to attempt the rather ambitious goal of
predicting both porosity as well as permeability of oil/gas reservoir sand
stone plugs directly from digital images, for example as obtained during
routine core slab photo documentation. This approach is contingent upon
seamless interaction between digital imaging (with optimised low-angle

Fig. 1. Calibration and validation sandstone plug images obtained according to the unilateral low-angle illumination imaging described in the text. Each plug is
represented by two juxtaposed images [cal; vall, also further described in the text and in Fig. 3. Observe the visually successful span obtained from fine-grained to
coarse-grained sandstones. The present feasibility study attempts to model the quantitative range of poro-perm related image features using the AMT transform.

Individual horizontal image edge: = 23 mm.
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illumination), the AMT 2-D to 1-D transformation and chemometric data
modelling. The following reports on this feasibility study.

2. Materials and methods
2.1. Sand stone core plugs

A typical sandstone plug set was obtained from the public parts of
GEUS' extensive national drill core archive. Sandstone core plugs were
selected and screened from the open access "Helsingborg drill core’, using
in-house core laboratory porosity and permeability data. The sandstone
facies of this core is known to correlate with typical reservoir sandstone
in the Danish North Sea oil and gas province [24,25]. While most other
aspects of the test results obtained from this drill core are proprietary,
GEUS permitted use of the plug results obtained in GEUS core laboratory,
used here as porosity and permeability reference determinations [26].
The plugs had previously been cleaned according to standard procedures
at GEUS’ core lab.

The primary criterion for inclusion was the quantitative span with
respect to porosity, as revealed by the training data set depicted in Fig. 1.
This figure illustrates well the unilateral low-angle illumination ’light/
shadow’ rendition of the sandstone plug end appearances which is the
basis for the subsequent AMT transform, described below. One observes
only a very few, if any, examples of residual cutting traces from the
diamond saw used for plug production in this data set, in which great
care was taken to acquire only the best quality plug end cuts.

2.2. Camera rig

It was considered as a welcome challenge to conduct this feasibility
study with a minimum of equipment costs. The experimental setup used
for image acquisition consists of a standard camera stand with a vertically
mounted camera, focusing on sandstone plug end surfaces, see Fig. 2. The
camera focal length distance (standard, high-level digital camera) is
adjustable vertically to allow for varying plug lengths. A high-quality
video projector was used for the illumination source because of the
high luminous intensity and the even distribution of light on the plug
surface. The angle between the plug surface and the illumination axis is
adjustable for angle optimization, o, which has previously been shown to
be an application-dependent success factor [7-11,14]. The technical
specification of the image acquisition facility is listed in Table 1, which
also report the camera settings used image acquisition of all plugs
investigated in this study. From this context it is clear that the most
critical success-factor is the camera resolution. For the purpose of the
present feasibility study, a camera with 18 megapixel resolution was
considered satisfactory.

Fig. 3 shows the pertinent details of the imaging approach. It is
particularly relevant to use opposite ends of the plugs selected as basis for

Camera

Fig. 2. Experimental camera rig (principal sketch).
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Fig. 3. Sand stone plug imaging. A: mm scale, B: spiral unfolding scheme, C:
calibration and validation images from top and bottom of plugs, D: calibration
and validation image orientations. The low-angle illumination (12°) light/
shadow photographic details are especially well illustrated in A) and D).

Table 1
Technical specification of camera rig.

Camera: Canon EOS 100D

Shutter time: 1/25s

Aperture: F/14

1SO: 200

Resolution: 18 megapixels

Lens: Canon MP-E 65 mm 1-5x Macro Lens
Magnification: 1-5x

65 mm

Acer X112 DLP projector
12° [see refs 7-10,14]
HAMA Repro table

Focal length:
Ilumination projector:
Hlumination angle a:
Camera stand:

calibration and validation images, since these end-faces bracket the cy-
lindrical plug volume through which permeability measurements have
been conducted. It is equally relevant to estimate the porosity from the
images of each plug end in order to force an element of practical rele-
vance into a test set validation context.

From the results and experiences covering several AMT development
studies, it is important how low-angle illuminated 2-D texture images are
unfolded to become a 1-D feature vector [7-11,14]. It was found in
Ref. [11] that the spiral unfolding scheme had many advantages, and this
approach was also used here; see Refs. [7,11,14] for more in-depth dis-
cussion of the unfolding issue.

3. Experimental
3.1. Image analysis

Digital photos of plug end surfaces were obtained under the camera
settings reported in Table 1. Image width =23 mm and the resolution
(mm/pixel) is 2.7 pm. Since the length of the selected sandstone plug
varied significantly, the camera was traversed vertically until plug sur-
faces was in focus, to ensure that camera, focus and lens settings were
identical for all images acquired. The physical length corresponding to
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one pixel width must be identical for all images (plugs) since their
derived AMT spectra (see below) furnishes the basis for a multivariate
calibration (X-data). The illumination source was also adjusted according
to the height of the plugs to ensure that the illumination angle was
identical, 12°, for all images (there is a curious analogy with a quite
different matter").

3.2. Training and test set selection

It was decided to use the one end of each plug (selected randomly) as
part of a chemometric training data set (see further below), with the
opposite end forming a bona fide test set, Fig. 3. The distance between
plug ends spans a few centimeters (plugs are sub-drilled with their lon-
gitudinal axis corresponding to the horizontal sedimentary rock forma-
tion bedding direction), thus allowing the pertinent local along-bedding
heterogeneity to play a role commensurate with the reference laboratory
poro-perm measurement scale, cfr. Fig. 3c, see Halvorsen and Hurst
(1990) for details concerning relevant permeability measurement setups
[27]. Fig. 3c and d shows how this disposition was realised. From a data
analytical point of view this setup constitute a meaningful and realistic
training vs. test set according to the *principles of proper validation’ laid
out in Esbensen & Geladi (2010) [28] and Esbensen & Swarbrick (2018)
[29].

3.3. Data set prequalification

Fig. 4 shows a typical permeability vs. porosity plot, which is a
standard feature in all oil/gas reservoir rock characterisation projects.
There is often a medium-to-strong correlation relationship between these
two parameters, but not over all ranges.

From Fig. 4 it is apparent that sandstones with effective porosities
below 15% behave markedly different from all other plugs in the set used
here. From general background knowledge pertaining to the geology of
the Helsingborg drill core, it is likely that porosity tapers off dramatically
below this threshold due to secondary precipitation in the porous voids,
effectively closing the 3-D void network, also, in particular, as regards
flow-through possibilities.

This relationship notwithstanding, it was decided to keep these plugs,
at least in a first modelling step, to see whether it would be possible to
model porosity and permeability separately, perhaps including these
apparently deviating data. If this turned out not to be the case, deletion of
these low poro-perm rocks would be quite acceptable, as the goal of
sandstone poro-perm prediction of course is only directed at typical and
realistic void and flow regimes of relevance for the oil and gas industry,
which is precisely above 15% porosity.

1 In the year of the 50th anniversary of the first Moon landing, it is interesting
to note that the exact same topic had also been the subject of quite intense study,
albeit in an apparently completely different context: “Now that Armstrong was
headed beyond the crater, he needed to pick a good spot to land, a potentially difficult
enterprise given the very peculiar lighting conditions affecting the Moon’s surface
which there had been no way to simulate on Earth. ‘It was of great concern’ recalled
Neil Armstrong, ‘that as we got close to the Moon, the reflected light off the surface
would be so strong, no matter what angle we came in on, that a lot of our vision would
be wiped out, seriously affecting our depth perception.’ Fortunately, NASA’s mission
planners had given plenty of forethought to the photometrics involved. They had
concluded that, for optimum depth perception, the Eagle (the Lunar Excursion Mod-
ule, LEM) needed to land at a time of “day” and at an angle that produced the longest
possible shadows. Where there were no shadows, the Moon looked flat, but where
shadows were long, the Moon looked fully three-dimensional. [ .... .] The ideal con-
dition occurred for the descent trajectory of the LEM when the Sun was 12.5 degrees
above the horizon. That was the time when Neil Armstrong and Buzz Aldrin would
have adequate light over the landing area and still strong depth-of-field defi-
nition. "Quotation from p. 248 in James R. Hansen (2018) “FIRST MAN - The
Life of Neil Armstrong” 3.rd ed. Simon & Schuster. ISBN 978-1-9821-0316-3
(emphasis, present authors) [30].
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Fig. 4. Permeability [mDarcy] vs. Porosity [%]. Porosities below 15% could be
excluded from the training and test data sets, but were retained in the modelling
in this project, see text for details.

3.4. AMT - image pre-processing

The AMT transform operates on data organised as 1-D measurement
series, either original data types (e.g. time series) or other types of data
which have been transformed into such a format, in the present case
unfolded digital 2-D texture images, as illustrated in Fig. 3b here using a
spiral unfolding vectorisation. Original as well as transformed 1-D data
series can be subjected to the Angle Measure Transform (AMT) according
to the detailed descriptions found in Refs. [6-8]. Suffice with the briefest
phenomenological introduction here, see Fig. 5.

The unfolding issue revolves around alternative ways to linearise
(‘vectorise’) a digital image, for which there are three principal alter-
natives, colloquially termed “chop-chop”, “snake” and “spiral”. These
should only be applied to images of an isotropic nature i.e. not dominated
by anisotropic structural elements or marked periodic patterns, but are
well suited for unfolding of texture images like the ones presented in this
paper. Based on decades of experience some effects related to the specific

Image unfolding
alternatives:

Chop-chop Snake Spiral

Fig. 5. Top: Image unfolding alternatives. Bottom: The elements in the Angle
Measure Technique (AMT) [1,11]. Point A is a randomly selected datum from
the full unfolded data series.
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choice of unfolding approaches have come to light.

Chop-chop unfolding: an artifact, a discontinuity along the unfolded
dimension is introduced (with a period corresponding to the image
width) which is a reflection of different texture pixel patterns at the two
edges of the image, which may be of varied magnitude. This translates
into a (minor, major) periodicity artifact in the AMT spectra.

Snake unfolding: dampens this discontinuity effect, but will resultin a
near-field ‘shadow correlation’ between pixels along two, close-lying
consecutive digital image lines with regular occurrences.

Spiral unfolding: will only result in such correlation effects between
pixels along a few image lines in the center of the image.

The side effects of the two latter methods are reduced significantly by
selection of random AMT center pixels on the unfolded digitized line. The
artifact from Chop-chop is by far the most prominent, for which reason
Chop-chop is no longer used. As the Spiral method only has unwanted
effects in the narrow center of the spiral pattern, a minute fraction of the
total line distance - which routinely is deselected in practical use, this
approach is superior. It is fair to relate however, that in practice Spiral
and Snake often produce very comparable unfolded 1-D versions of
texture images.

A number (n) of points, A, (2500 points) on the unfolded intensity
curve are randomly selected from the entire data series (using a stratified
random selection option, 20 segments (strata). Stratification is the pro-
cess of dividing the members of the population into homogeneous sub-
groups prior to sampling. Then, single random sampling or systematic
sampling within each layer is used. The goal is to improve the precision of
the sample by reducing the sampling error. For each point A, a circle with
a radius with the contemporary scale (s) is drawn. The circle intersect the
intensity curve at two points B, and C, The supplementary angle of
CrnAnBn(s) is calculated for all sample points n. The average value of all
CnAnBn(s) is then calculated, as MA(s) for the given s (Mean Angle). The
scale s is then allowed to be incrementally raised to s+1, so that s ranges
from 1 (minimum length s=1 pixel) to a maximum value sp,y, after
which the MA process is repeated for each scale s up to syax. The MA(s)
values can be represented in a graph where the computed MA(s) is
plotted as a function of the scale s; the resulting plotted line is the so-
called AMT spectrum (Complexity Spectrum) as shown in Fig. 6.

The 88 final (44 calibration/validation) images used in this study
were all subjected to an identical AMT transform as described above,
which resulted in the set of Mean Angle (MA) complexity spectra dis-
played in Fig. 6. The X-matrix used for calibration of the models were 44
spectra and 500 variables (44 MA spectra and s = 1-500). The validation

Mean Angle [degrees]

0 100 200 300 400 500
Scale [pixels]

Fig. 6. Mean Angle (MA) spectra of all 88 sandstone plug images comprising the
training + test set in the PLS-modelling below. These spectra can conveniently
be collected into an X-matrix with a view of subsequent multivariate calibration.
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data had identical dimensions.
3.5. PLS-R (method description)

Partial Least Squares Regression is an empirical -data driven
-modelling approach which is well explained in literature [28,29] and
therefore not explained in detail here. PLS-R relies on representative
training data for two variable blocks, often called X and Y respectively. In
the present study the X data matrix contains the mean angles for each
scale parameter s, and Y is a vector containing the parameter of interest
which is porosity or permeability since these are modelled separately.

4. Analysis & results

Figs. 7 and 8 show the complete PLS-R test set validation results for
porosity and permeability individually, both models using 4 PLS-
components.

4.1. PLS-R model relationships and interpretation

Although both models are supported by four components when test
set validated, we only interpret and illustrate the first and second PLS-
components here, because these account for the dominant >95% of the
y-variable variance explained. The relationships described below will not
change in any significant way were the PLS-models based on three, or
two PLS-components.

The X-axis along which the X-variables are plotted represent scale.
The ‘ordering distance’ from variable i to variable i+1 is physically
identical to the unit pixel resolution, i.e. physically corresponding to a
fraction of a mm as realised by the camera setup geometry, cfr. Fig. 2.
Thus the variable identification number along the X-axis of the loading-
weight plot in Figs. 7 and 8 corresponds to larger and larger physical
scales. For both models, the total number of scale units used are 500, ibid.
Thus it is easy to interpret the loading-weights (w-spectra) and to
compare their scale significance. Interpretation of both the original MA
spectra as well as loading (p) or loading-weight (w) spectra, follows
standard chemometric data modelling principles [29]. Thus one, or
more, prominent scale mode(s) (peaks) represent a dominant scale that is
strongly involved in supporting the data analytical model [6-14,29].
delved into these interpretation matters in full detail regarding a suite of
quite different y-variable types that all could be related to the specifics of
the suite of MA spectra collected into a data analytical X-matrix.

For the present PLS-models, the interpretation of the w-spectra is easy
and clear. The w; spectrum reveals a prominent uni-modal peak corre-
sponding to a scale of ~25 pixels for both the porosity and the perme-
ability model. This scale physically corresponds to ~67.5pm,
representing the average size of the geometric light/shadow elements of
all the samples included in the training data set. This is either the average
grain size and/or the average void size, which are highly correlated
because of the low-angle illumination producing the light/shadow
photos. This means that the t;-score of a particular sample is proportional
to the average pore size of this sample — a smaller or larger t;-score
corresponds to smaller or larger average pore sizes of the suite of samples
studied. This is strongly corroborated by the special visualization plot
pairs prepared as Figs. 9 and 10. Thus the first PLS-component in both
models represent average pore size of the area shown in each original
image. The major gamble in the present study is whether there also is
embedded information in this type of light/shadow photos related to
permeability, i.e. whether a PLS model can also extract information upon
which a permeability model can be constructed.

From Figs. 7 and 8, which overall show a markedly similar w-loading
weight pattern, it is clear that the basis for the present separate models
for porosity and permeability, owes a lot to the internal strong correla-
tions between these two parameters, cfr. Fig. 4.

In this context, the patterns modelled by the second PLS-components
in both models are of particular interest. Both reveal a bi-modal,
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Fig. 7. PLS-R modelling and validation results when prediction sandstone plug porosity [%]. Test set validation parameters, slope: 0.86; RMSEP: 2.2% (RMSE,:

2.08%); R?=0.90. The optimal PLS-model used 4 components. RMSEP ) = 12%.

antithetic pattern with a first mode slightly smaller than for the wy-
spectra, which is anti-correlated with a second, larger scale mode. This
overall pattern is generally in common for both PLS-models, although
different with respect to minor details between the porosity and the
permeability models. Careful scrutiny of the special visualization plots
presented below in which the original texture images are included,
indicate that the second PLS-component models a partially different
physical aspect than the first. More detailed physical interpretations are
best postponed until a more comprehensive data set is available. It is
clear that what might work for one specific realization of reservoir rock
sandstones, certainly must also be thoroughly tested against other
reservoir sandstones in a geologically well bracketed design.

Figs. 9 and 10 illustrate details of the relationships between the visual
texture images and their internal relationships in the models, the latter as
revealed by t;-t score plots from the individual PLS-regression models.
There is a regular gradual relationship between image texture features
and the disposition of the plug samples in the score plots.

The perhaps most remarkable feature is that it turns out to be fully
possible to include the <15% porosity samples identified in Fig. 4 in the
porosity model — while these samples serve only to “smear out” the
effective zero level for permeability; they may better be deleted here.
These relationships are shown with clarity in the ‘predicted vs. reference’
plots in Figs. 9 and 10.

4.2. Validation

This feasibility study makes use of test set validation [28,29], for
which reason the quoted validation statistics are reliable characteristics
of the prediction performances for porosity and permeability for similar
sandstone rocks, but in this feasibility study all rocks derive from the
same depth interval in one drill core only.

Figs. 9 and 10 are presented for additional insight into the merit and
validity of the training and test set definition chosen. In these plots the
calibration image and the corresponding test set image renditions are
identified by a ‘connecting line’. This allows visual appreciation of the
degree of similarity/dissimilarity between corresponding pairs of plug
ends; it especially allows identification of pairs of relatively marked
dissimilarity, of which each plot contains ~3-5. It is observed that these
pairs are not the same for porosity and permeability respectively,
attesting to different 3-D void/matrix and pore connectivity relationships
in some of the individual rocks involved [27]. These discrepancies may
also relate to different degrees of residual cutting traces left on opposite
ends for a small number of plugs.

For the feasibility study purpose it suffices to acknowledge that such
larger-then-average calibration-validation image differences constitute
the most influential components in the RMSEP levels achieved, i.e. in
cases where the one plug end is revealed to be more different from the
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porosity [%] with selected plug images.
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Fig. 10. Left: Score plot t1-t2 for the PLS-R model of permeability [mDarcy] Calibration and validation images connected with lines. Right: Score plot t1-t2 for the

PLS-R model of permeability [mDarcy] with selected plug images.

other compared with most other plugs in the data set, this local scale
heterogeneity makes a larger-than-average contribution to the overall
prediction uncertainty, i.e. will inflate RMSEP to some degree, which
would not be the case were these samples deleted as outliers. There is
nothing here that is not as expected on general grounds considering the
geology of sedimentary sandstone rock in general; see for example [27].
It has here been decided not to carry out such outlier policing in order to
subject the feasibility study testing to the most stringent conditions.

This kind of plot allows insight into plug heterogeneity per se and
partly also to larger scales in oil/gas reservoirs, to the degree that the full
plug set selected is representative for this regimen. The issue of indi-
vidual plug representativity w.r.t. the drill core from which there have
been extracted is a topic for further discussions in the geological realm.

A specific variant of RMSEP validation parameter, suitable for com-
parison, is the relative RMSEP,.; measure, defined as RMSEP x 100
[%]/average laboratory level. For porosity and permeability RMSEP,|
comes to 12% and 19% respectively, which is deemed as a fair prediction
performance statistics for a very first feasibility study. For comparison the
analytical uncertainty of reference measurements (GEUS core laboratory)
for porosity at 95% level of confidence ( 2 std) is 0.2 p.u. (%). For
permeability the analytical uncertainty is declared to be in the interval
6-15%(rel) (high-to-low permeability).

The degree of confidence one can assign to such first precision level
estimates depends entirely on the representativity of the single drill core
used in this study. It was decided to do a first feasibility study based on
one well, carefully selected, simply to be able to progress to a signifi-
cantly more elaborated training/test set on a reasonable ‘proven basis’ -
or to terminate this image analytical approach at this stage. Thus there
are several features of the calibration/test sets that indeed are open for
potential considerable improvement(s), e.g. it is highly desirable with
plugs from more than one (preferentially many, well selected) randomly
selected well commensurate with the relevant type(s) of reservoir sand-
stone formations, and of course the obligatory data modelling comment
wishing for a larger training set, i.e. more training set plugs. While the
low-angle illumination was mainly fixed based on earlier studies, the
specific value of 12° w.r.t. horizontal would not appear to be a candidate
for significant improvements, given the somewhat broad target material
types discussed in the introduction (see also footnote 1).

5. Conclusions

A new approach for prediction of porosity and permeability in sand-
stone drill core plugs using AMT transformed images and chemometric

multivariate calibration PLS models has been feasibility tested. Based on a
single drill core from the Danish underground carrying a realistic span of
both porosity and permeability levels for typical of oil and gas field sedi-
mentary sandstones, which furthered a reasonable number of initial plug
samples, stringent test set validation (deliberately not involving outlier
policing), revealed a first estimate of prediction performance correspond-
ing to RMSEP;,| of 12% and 19% for porosity and permeability respec-
tively. These are considered fair and satisfactory feasibility study results.
From general geological understandings there would appear to be
good reasons to expect a possible significant lowering of these estimates
when a more comprehensive set of relevant plugs is available for a full-
scale technological calibration. In this context, a comprehensive oil &
gas reservoir geology competence and experience will be the critical
success factor for possible improved modelling and prediction ability.

6. Perspectives

Within the oil/gas industry sector, since 1990 there has been a
gradual phasing in of mini-permeametry as a complement to traditional
Hasler-sleeve laboratory method, the results of which are still considered
authoritative. But this comes at the price of a significantly larger effort
and cost outlay. This development was first described in 1990 [27], who
then predicted a time at which a well-calibrated and extensively tested
mini-permeametry regimen might, if not completely have taken over,
then certainly fulfill a role as a full-fledged complementary approach
because it allows a considerable higher number of determinations at the
same accuracy and precision levels.

The present, still more effortless and considerably more effective
approach, was originally conceived as but one extension along the lines
of several other studies involving the new AMT transform and its po-
tential induction into technology and industry sectors. Several of the
previous AMT studies discussed in the introduction also employ the scope
of the 2-D image-to-vector unfolding precursor to AMT complexity
characterization, but the specific application to porous media has long
only been a “what if” possible option by the senior author (KHE), earlier
pioneered by application to aggregate media in the scale regimens of
powders, sand and similar materials.

With the present feasibility results there may emerge an analogue
development as became the fate of mini-permeametry. However, there
are also valid grounds for not overstating this potential. This is so because
all chemometric multivariate calibration models, to be used for
extremely efficient prediction, are empirical and always critically
dependent upon the availability, validity and representativity of the
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training and test sets involved. The powerful prediction potential of well
calibrated PLS-models must at all times be checked by proper empirical
validation, i.e. test set validation [28,29] in the most realistic contexts
possible.

So, there is a way to go still, applying the present IA-AMT-PLS
approach to many more relevant training/validation data sets of close
relevance to the many geological specifics pertaining to oil/gas reservoir
rocks in general and to individual sedimentary basins, before a fully
tested facility can be said to have been established. As but a few, easily
envisaged possible humps on the road forward, mentioning should be
made of:

i) Only cleaned plugs are relevant for the present kind of imaging
ii) Only pristine porous/permeable reservoir rocks are relevant.
There must be no significant void precipitations or metamorphic
transformation of the original sedimentary rocks ‘closing up’ the
interconnecting ‘necks’ connecting pore voids
iii) No significant cutting defects degrading the imaging quality of
plug ends (no saw marks etc.) There may perhaps be secondary
progress possibilities focusing on the specific diamond cutting
procedures in use.
It is fully possible to use a higher resolution camera which in all
likelihood will be able to furnish a more detailed light/shadow
rendition of the plug end details which may, or may not, be able to
improve the modelling efficiency for the second (or higher) PLS-
components?

iv

—

However, should (all) such potential issues be successfully overcome,
the only remaining roadblock would appear to be the quality and
geological representativity of the training/validation sets. But these are
all principally easy issues to resolve; there exist a plethora of already
completed drill cores from all the world’s very many oil and gas fields,
very many of which complete with plugs and relevant poro-perm data
also available. The last troublesome issue would then be related to the
considerable logistics concerning getting permission to collect the kind of
“across-company” sample sets ultimately desired, but perhaps in-house
or in-company samples will suffice for many purposes.

The present experimental approach, if/when properly further vali-
dated and accepted, could for example find use as a screening comple-
ment to more elaborate and workload demanding poro-perm
determination in the core laboratory a.o.
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