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A B S T R A C T

Material sampling is a critical component in mining and mineral processing industries. Nonetheless, sampling is
often considered to be a simple matter and, as such, non-rigorous sampling protocols are often applied. The use
of inappropriate methods produces inferior, non-representative estimates of sampling target composition. To
address weaknesses in sampling protocols and evaluate the representativeness of collected samples, we per-
formed a feasibility study of the ability of handheld X-ray fluorescence (HHXRF) to achieve a satisfactory
characterization of a raw material lot at a pyrometallurgical ferrosilicon plant. Using composite and grab
samples, we determined the various sampling error manifestations stemming from the fundamental sampling
error, grouping and segregation error, as well as increment delimitation, increment extraction, and increment
preparation errors), and performed a first foray determination of optimal sample mass, and estimated the het-
erogeneity within the sampling target. HHXRF results were compared with the results obtained using laboratory
XRF. A first estimate of optimized sample mass for HHXRF was 10 kg, given the large size of crushed quartz
blocks used in ferrosilicon plants—roughly cubic, 10 cm per side; accuracy improved with increased sample mass
(18% error with a 10 kg sample versus 35% error when using a 1 kg sample). A 10 kg sample is also the mass a
technician can realistically transport from the sampling site to the preparation facilities. The main contribution
to the global estimation error is from primary sampling. Variographic analysis illustrated a sill equal to the
nugget effect, indicating that two adjacent samples are no more similar than two samples separated by larger
distance; this suggests equal spatial heterogeneity at all scales larger than the increment mass in the sampling
target. Analytically, the HHXRF and desktop XRF results compared very well. Overall, the error associated with
our first attempt at field composite sampling was half of that obtained via grab sampling for both the HHXRF and
desktop XRF protocols. Relative to conventional analysis based on grab sampling and analysis via desktop XRF,
the use of handheld XRF coupled with composite sampling would appear to be a feasible approach for an
improved sampling protocol for obtaining fit-for-purpose characterizations of industrial quartzite.

1. Introduction

The theory of sampling (TOS) addresses heterogeneity, one of the
most important phenomena in the characterization of materials.
Heterogeneity, regardless of scale, complicates sampling of a larger
sampling target, i.e. the lot, as there is no guarantee that the compo-
sition of smaller samples is identical to that of the lot to be processed if
sampling is based on a non-representative approach.

Despite this fundamental uncertainty, it is surprising to find that
sampling strategies and the verification of sample accuracy are often

trivialized. The primary objective of sampling is to provide reliable
information about the entire lot with a known and acceptable level of
total uncertainty (sampling + analysis variability). Nonetheless, few
industry professionals change from established, albeit potentially er-
roneous, sampling strategies to a more representative approach without
serious reasons. Thus, the collection of a single sample, or a few hap-
hazardly selected specimens, i.e. grab sampling, continues to dominate
sampling practices in many instances.

Grab sampling does not, however, provide representative samples
except by chance (DS 3077, 2013; Gy, 1998; Pitard, 2009; Esbensen and
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Julius, 2009; Minkkinen and Esbensen, 2009; Esbensen and Wagner,
2014; Esbensen et al., 2018). Sampling is almost always carried out as a
single operation, as this is the quickest, least expensive, and least effort-
demanding approach. Only in rare instances, where the sampled lot
material is of relatively uniform composition, is grab sampling poten-
tially acceptable and relevant. Nonetheless, the representativeness of
these selected cases still requires verification, as is the case in any other
case with significant heterogeneity.

Most laboratories provide a valid estimate of the total analytical
error (TAE); however, few laboratories include sampling error con-
tributions (total sampling error, TSE) despite there often being
10–100× greater than TAE (Gy, 1998; Taylor et al., 2007; Pitard, 2009;
Esbensen and Julius, 2009; Esbensen and Wagner, 2014; Esbensen
et al., 2018). Typically > 80% of the global estimation error
(GEE = TAE + TSE) can be due to sampling (primary sampling + mass-
reduction sub-sampling in the laboratory) and < 20% stems from
analysis (Esbensen and Petersen, 2005; Esbensen and Wagner, 2014).
Any decrease in GEE improves analytical relevance. Unfortunately,
industry largely continues to avoid addressing the contribution from
sampling errors.

To improve the validity of sample measurements, standard sampling
protocols must be revised to reduce or eliminate the most significant
and dominant errors. In the mining and mineral processing sectors,
increasing profitability often requires an increase in production capa-
city with a concomitant need to process greater amounts of unprocessed
material. This scenario implies larger lots to manage, monitor, and
characterize, and this is often combined with increased processing
rates. A likely consequence is that it becomes more difficult to obtain
representative results—from samples typically on the order of
grams—when the target lot is on the order of several hundred metric
tonnes. For such large mass-reduction situations, it is particularly im-
portant that the sampling practice be guided by TOS (DS 3077, 2013;
Esbensen and Wagner, 2014; Esbensen and Julius, 2013; Esbensen and
Petersen, 2005).

The use of handheld X-ray fluorescence (HHXRF) tools can address
some of the key issues surrounding the need to obtain rapid, in-situ
chemical characterization with minimal sample preparation (Taylor
et al., 2005). HHXRF may improve the characterization of large lots due
to its transportability and its ability to sample at a higher throughput
(Ramsey and Boon, 2012; Ramsey et al., 2013). However, few studies
have demonstrated the potential of HHXRF to provide fit-for-purpose
representative results in an industrial context (Bédard and Barnes,
2011; Thompson and Ellison 2006; Thompson and Feam, 1996).

In an earlier study, the specific analytical performance of a dedi-
cated HHXRF showed good potential in evaluating and quantifying
quartzite geochemistry (Desroches et al., 2018). Furthermore, this
study confirmed previous observations that correcting initial results
with reference materials improves significantly the analytical accuracy
of final estimates (e.g. Cohen et al., 2017; Gazley and Fisher 2014;
Fisher et al., 2014; Hall et al., 2014; Lemière, 2018; Quye-Sawyer et al.,
2015; Ross et al., 2014; de Winter et al., 2017). High purity quartzite,
despite its chemically simple matrix, has a highly complex spatial
heterogeneity of low concentration levels of intrinsic impurities. Using
powdered samples, Desroches et al. (2018) nevertheless showed that an
HHXRF (a Niton XL3t GOLDD+) can provide a reliable quantitative
analysis even at such low concentrations as are of importance in the
present feasibility study. Here, we assess the performance of HHXRF in
its ability to achieve satisfactory representativeness within the context
of an industrial lot at a ferrosilicon plant.

2. Materials and methods

2.1. Elkem Métal Canada ferrosilicon plant

Elkem Métal Canada Inc. is a producer of ferrosilicon alloy.
Production relies on two main pathways characterized respectively by a

base of 50% or 75% silicon, and it has several customer-specified ad-
ditive options, e.g. foundry and steel plants. For this type of production,
the plant reduces quartz (SiO2) by a combination of melting in a blast
furnace and Söderberg electrolysis (Collins et al. 1974; Lemieux 2009).
For this process to be successful, the composition of quartz (more
precisely, quartzite) must be carefully monitored and controlled. Con-
taminants, such as aluminum, can dilute the silica phase. They become
less available for reduction and accumulate as a viscous melt in the
furnace (Tuset 1992; Tomé Torquemada 2019). Although quartz may
appear to be a simple matrix, the low concentrations of impurities—in
the form of discrete minute grains of ilmenite (FeTiO3) or magnetite
(Fe3O4), for example—increase the difficulty of accurate analysis. These
impurities exhibit an extreme degree of spatial heterogeneity and thus
make proper sampling highly challenging.

As the matrix is essentially SiO2 (> 98% m/m), Elkem Métal does
not analyze individual shipments of quartz but instead relies on tradi-
tional grab samples over contractually specified volume/time periods.
This protocol is a major potential weakness for proper QC/QA and re-
presents one of the main reasons driving this study.

2.2. Theory of sampling overview

Although grab sampling may, by chance, result in a sample having a
broadly similar composition as the larger lot, it is never possible to
identify when this situation occurs in practice. TOS can provide the
necessary framework to ensure representative sampling of a lot. TOS is
also the proper basis upon which specific HHXRF evaluations should be
carried out.

2.2.1. Fundamental sampling principle
According to TOS, all units of the lot, i.e. minerals and/or incre-

ments, must be fully accessible for sampling; this is the fundamental
sampling principle (FSP). A “lot” designates the sampling target which
has a specific scale; i.e. a stockpile, a barrel, a truck or railroad load, or
a geological outcrop. Its precise meaning depends on the specific si-
tuation. All lots are comprised of a specific material, occupying a spe-
cific geometrical volume, and they have a specific lot mass, density, etc.
The common adverse characteristic of all lots in regard to the possibility
of proper sampling is heterogeneity; therefore, a focused and unified
approach is required. In the mining and mineral processing sectors,
surface samples of a stationary lot are often assumed to be sufficient for
characterization of a lot; however, such protocols do not follow TOS.

TOS also mandates the use of composite sampling with a hetero-
geneity-related number of increments (Q). An increment designates a
single extracted unit, which is often defined by the volume of the
sampling tool. When combined with other such units, these ‘partial lot
units’ make up a composite sample. The only free parameter in com-
posite sampling is the required number of increments Q to ensure the
results are fit-for-purpose. Combining spatially dispersed Q that cover
the entire lot is thus the only sampling process that will be acceptable;
this protocol should also be able to indicate the total sample weight
(Q × the increment weight).

2.2.2. Sampling errors
TOS identifies five types of error that may occur during the sam-

pling of stationary lots (Esbensen and Julius, 2013; Minkkinen and
Esbensen, 2009; Pitard, 2009); these errors are listed in Table 1, or-
ganized according to their logical order in the sampling process and not
necessarily in order of their quantitative importance. Two additional
specific errors occur when sampling moving or dynamic lots (Esbensen
and Julius, 2013; Minkkinen and Esbensen, 2009; Pitard, 2009). The
fundamental sampling error (FSE) is material specific; for example, it
can only be reduced via physically modifying the sampled material by
decreasing the size of the largest particles via crushing, technically
comminution. FSE is inversely proportional to the realized sample
mass; however, increasing sample mass by itself will not significantly
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improve the representativeness of the sampling process as all grab
samples represent only a minute fraction of the entire industrial lot.

The grouping and segregation error (GSE) increases as spatial het-
erogeneity increases. Heterogeneity is most often due to the presence of
local “hot spots,” i.e. markedly higher or lower analyte values than the
average concentration due to grouping, stratification, and segregation.
GSE also occurs due to temporal heterogeneity whenever transportation
plays a role, i.e. smaller fragments and denser fragments will segregate
downward during transport-induced shaking. This error can be reduced
and even almost eliminated on occasion by effective composite sam-
pling and, for smaller lots, forceful mixing.

The increment delimitation error (IDE) occurs when the geometric
delineations of the increments being sampled are unable to be re-
produced precisely. The increment extraction error (IEE) relates to the
extraction of increments with a specific sampling tool. Sampling be-
comes more accurate depending on that all particles can be extracted
with equal probability by the sampling tool employed; increment must
only reflect the delineated inctement volume (no contamination etc.).
IEE can be reduced by careful equipment design and careful monitoring
of the sampling process. The increment preparation error (IPE) en-
capsulates all errors produced during post-sampling handling, mixing,
comminution, transportation, or other processes in the laboratory. It is
related to the potential loss of matter—via dust, moisture, improper
cleaning, etc. IPE is also a reflection of potential chemical or physical
alteration of the sample, and any negligence or non-adherence to good
laboratory practices by technicians. These three sampling errors, IDE,
IEE, and IPE, are collectively termed the “incorrect sampling errors”
(ISE). These are critical sampling errors because, if not eliminated from
the sampling process, they generate critical biases, which cannot be
corrected by any means (Esbensen and Wagner, 2014). The sum of all
these five identified errors represent the total sampling error (TSE). The
increment weighing error (IWE) could be added to the TSE. However,
IWE is not directly involved in HHXRF sampling, which typically re-
flects a comparable analytical volume. In addition, acceptable variation
for increment weights during conventional process sampling can be up
to ± 20% (Esbensen and Petersen, 2005).

2.2.3. Replication experiment
Variation between samples that have been sampled by the exact

same procedures can be quantified by analyzing replicate samples. The
precise number of replicates needs to be defined after careful con-
sideration (see Esbensen and Wagner, 2014; DS 3077, 2013). Replica-
tion experiments (RE) can quantify the effects of variation in total
sampling, processing, and analytical error (Juran and Godfrey, 1998;
DS 3077, 2013; Esbensen and Julius 2009; Esbensen and Wagner,
2014). RE can determine whether the HHXRF procedure is fit-for-pur-
pose, when applied ‘from the top’ i.e. when replication starts with the
primary sampling - and, when applied hierarchically, can also identify
those subsequent steps that contribute the most to the overall

variability. Thus, RE can improve understanding of the entire “lot-to-
aliquot” pathway. RE can be applied to any new or existing sampling
procedure, where RE must always begin at the primary sampling stage
to ensure that the all sampling errors are included in the estimate of the
total measurement uncertainty.

The RE approach can be applied to primary sampling or in a hier-
archical fashion to each sampling, processing, or analytical stage. The
latter quantifies the effective errors that are produced at each stage. We
selected this approach in the present study as our main feasibility ob-
jective was to quantify the effective error for each step of the sampling
procedure. The evaluation of each step requires a minimum of ten re-
plicate sampling operations (Esbensen and Julius, 2009). With five
identified stages, this translated into fifty analytical samples: beginning
with ten primary samples (PSE), we then prepared, in an identical
manner, ten new samples from one of the primary samples, selected at
random. We repeated this protocol—ten subsamples from a randomly
selected sample—at each step, cascading hierarchically down through
the sample preparation steps (Fig. 1). From this protocol, we could
identify and quantify the procedure, stage, or equipment that con-
tributed the most to the empirical error. This is an enfolding experiment
design (elaborately explained in the TOS literature referred to above,
keeping the total number of “runs” at a manageable level. Note that this
approach is different from a traditional Design of Experiment approach
with the intention of being variance decomposed by ANOVA. One is in
no way able to control all factors involved in the present, practical
design which instead follows the lot-to-aliquot pathway in a straight
realistic fashion.

2.2.4. Sampling and sample preparation
The first step in mass reduction is crushing. Although reducing

sample mass appears simple and straightforward, mistakes do occur,
and highly significant sampling errors can be introduced during mass
reduction (Petersen et al., 2004). By minimizing the largest particle
sizes, the total lot heterogeneity can be reduced most effectively by
subsequent mixing, and the efficiency of mixing is also improved for
smaller particles. This reduces both GSE and FSE, leaving the com-
minuted particles a markedly improved chance of being sampled
evenly. If mixing occurs with maximum effect, GSE can in many cases
be almost eliminated, especially for operations that can be controlled at
the laboratory scale.

Composite sampling involves collecting many increments (Q) to
form an aggregate, composite sample. The greater the number of in-
crements used, the greater the likelihood that the resulting aggregate
sample will be a better representative of the full lot. However, the
spatial pattern of the increment locations must comply with the FSP. By
adhering to the latter (FSP), this approach has a profound effect on TSE,
which will decrease as the number of increments increases (DS 3077,
2013); Esbensen and Wagner, 2014). FSE is inversely proportional to
the mass sampled, but this is only of interest for composite samples, not

Table 1
Sampling errors and their sources.

Error type Error source

Fundamental sampling error (FSE) Associated with lot heterogeneity; FSE can only be reduced by comminution (crushing)
Grouping and segregation error (GSE) Associated with a heterogeneous spatial distribution;

GSE can be reduced by composite sampling and by thorough mixing
Incorrect sampling error

(ISE)
Increment delimitation error (IDE) Difficulties in reproducing the exact delimitation geometry of the increment being sampled;

Can be reduced, or eliminated by reproducing the delimitation exactly
Increment extraction error (IEE) Particles do not have the same probability of being part of the increment; IEE can be reduced by using

properly designed, maintained and monitored sampling tools
Increment preparation error (IPE) Errors reflecting non-controlled adverse handling, mixing, and comminution of samples or sub.samples;

IPE can be reduced by careful sample preparation procedures and due diligence, i.e. good laboratory
practices (GLP)

Total Total sampling error (TSE) TSE = FSE + GSE + IDE + IEE + IPE
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for individual grab (bulk) samples. Q increments must be deployed to
represent the full geometry (the full volume) of the lot; this is the only
means by which composite sampling reduces GSE, and this is very often
the only approach available at the primary sampling stage. This insight
was also the basis for designing the handheld XRF procedures in-
vestigated in this study.

There is a natural, minimum state of heterogeneity for all aggregate
materials; in fact, homogeneity is an ideal state that does not exist for
all naturally occurring and technological materials (Pitard, 2009; Gy,
1998). In contrast, ‘too much’ mixing can potentially increase segre-
gation temporarily, and will always end up producing a steady state
mixing–demixing situation (Esbensen and Julius, 2013).

2.3. Variogram

Variographic analysis provides a superior characterization of the
combination of a specific sampling process and the heterogeneity of the
lot material. Thus, this approach is always preferred for characteriza-
tion (DS 3077, 2013; Pitard, 2009; Esbensen et al., 2007; Esbensen and
Wagner, 2014). A variogram describes simultaneously, at all scales, the
empirical variance of a given one-dimensional data series. The vario-
gram presents variation as a function of inter-sample distance, called
the lag (h). This data series may stem from process data collection or, as
in this study, from a transect along which samples have been collected.
Minnitt and Esbensen (2017) explain variograms in full operative de-
tail, and their application to the mineral industry is presented by
Engström and Esbensen (2017a, 2017b). The variogram outlines the
degree of temporal or spatial autocorrelation (the variogram range). Its
most useful feature for our study is its ability to highlight the nugget
effect. The nugget effect quantifies total empirical sampling, prepara-
tion, and analytical error relative to the total observable process or
transect variability, called the sill of the variogram. The derived feature,
the nugget effect/sill ratio, decomposes the variation within the raw
serial data into the noise of the total measurement system versus the
true (decomposed) transect variability (DS 3077, 2013; Engström and
Esbensen, 2017a, 2017b; Esbensen et al., 2007; Minnitt and Esbensen,
2017, Pitard, 2009). On this basis, the possibility of observing a more-
or-less reduced transect variability is not seldomly surprising. Vario-
graphics is the only know approach that is able to decompose the total
“measurement uncertainty” (MU) from the underlying transect varia-
bility reflecting the spatial heterogeneity in the lot.

2.4. Experimental approach

2.4.1. Determining optimal sample mass
In industrial settings, such as mineral processing, critical tasks are

outlined in formal guidelines, standards, and procedures. However,
such documents do not always specify the optimized or required sample
mass, but they often recommend a “constant mass”. Worse still, such
fixed sample masses that are often derived from historical and non-TOS
practices are unable to deal with the variable heterogeneity within lots.
At Elkem Métal Canada Inc., the primary mass of a typical sample is ca.
10 kg, this being the weight limit that allows a technician to transport
the collected material easily from sampling points to the laboratory.
Note that this mass historically was determined without any pre-
liminary study or prior knowledge of TOS for that matter.

To determine whether a 10 kg mass is adequate for fit-for-purpose
sampling in the present context:

1. For each experiment detailed below, we collected 55 kg of quartzite
grab samples (crushed blocks of quartzite measuring about 10 cm on
a side) from the stockpile (Fig. 2);

2. We spread the samples on a table;
3. From these samples, we randomly selected quartz rocks to form ten

subsamples of increasing mass. The first subsample was 1 kg, the second
subsample 2 kg, the third was 3 kg, etc. up to 55 kg of rock sample in
total (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 kg = 55 kg);

4. We then prepared each subsample (1, 2, 3 … 10 kg)—crushed,
pulverized, and mass reduced (split) to an analytical mass
(50 g)—and then analyzed as a regular sample (Fig. 3, yet lacking
the mixing stage).

The weighted average of the samples was determined by:

=
× i

Weighted Average
%

55i

i

where i represents the masses of 1 to 10 kg, β represents % element
(such as Fe2O3), and 55 represents the total mass of the lot (55 kg).

For determining the accuracy of each mass, we followed:

=Accuracy
% weighted average

weighted averagei
i

This calculation was carried out for each element (analyte), see

Fig. 1. The hierarchical replication experiment. At each stage, a randomly selected sample is divided into ten subsamples and processed in the following step (shown
here as the tenth sample, but this positioning is for illustration purposes only). PSE: primary sampling stage; TAE: total analytical error.
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further below. To produce an overall representative estimate of accu-
racy, we repeated these measurements eight times. We then calculated
the mean accuracy corresponding to each mass.

We determined the mean accuracy via the following equation:

=
+ +

mean Accuracy
Accuracy Accuracy Accuracy µ

24i
i i i

where i represents the mass (1 to 10 kg), β represents %Fe2O3, α re-
presents %Al2O3, µ is %TiO2, and 24 represents the number of elements
multiplied by the number of realized repetitions (3 × 8).

2.5. Replication experiment

To determine the stage that most contributed to the GEE, we

performed a replication experiment in the form of repeated sampling of
the primary sampling stage along the complete ‘from-field-to-analysis’
pathway (Esbensen and Wagner, 2016). We subsequently also ran a
hierarchical RE (Fig. 1), allowing us to identify the primary sampling
error (field sampling), primary crushing error (jaw crusher), secondary
crushing error (roll crusher), pulverization and homogenization error
(Herzog Pulverizers, HP–MA), whereas the total analytical error (TAE)
is known from specific analytical validations.

2.6. Sampling methods

All samples, whether grab, composite, or variogram samples, were
collected on the same day from the same primary lot. The estimated
total lot mass (from the calibrated truckloads) was ca. 5000 t. We also
prepared ten primary composite samples, each having a mass of 150 kg
from this lot, as follows:

1. Each composite sample comprised 15 individual grab increments (of
10 kg each), collected randomly over the entire surface of the
stockpile (Fig. 3), for a total of 150 kg;

2. Each 10 kg increment was crushed (grain-size reduction) and the
mass reduced (split) down to 1.25 kg. We performed mass reduction
using a riffle splitter following a TOS-compliant approach (Petersen
et al., 2004). We prepared each increment in identical fashion;

3. We then aggregated and homogenized the 15 × 1.25 kg samples by
mixing them in a plastic barrel (half-filled with 15 × 1.25 kg ≅ 19 kg)
that we rolled on an inclined plane (approx. 30° incline) to ensure ef-
fective mixing (Fig. 3);

4. We emptied the barrel’s contents (ca. 19 kg) slowly into the roll
crusher and reduced it to a ca. 100 mesh; we then mass reduced the
contents seven times down to 0.15 kg, again using riffle slitting;

5. For the XRF analyses, we pulverized this 0.15 kg fraction to a
400 mesh (37 μm);

6. We repeated all the steps for each of the ten composite samples.

For the variogram analysis, we characterized the typical stockpile of
quartz (Fig. 2; ca. 5000 t) based on 65 samples collected along a ran-
domly selected directional transect over the surface of the stockpile.
The lag distance between increment locations was 30 cm.

To compare the alternative sampling protocols, we followed a strict
procedure for all subsequent crushing and splitting steps (Fig. 3).

2.7. Desktop XRF and HHXRF equipment

We selected a Niton XL3t GOLDD+ (8 mm beam footprint diameter)
developed by Thermo Fisher Scientific (Tewksbury, Massachusetts,
United States) as the HHXRF unit for this study. The instrument has an

Fig. 2. Sample collection from the quartzite stockpile. The stockpile dimensions are typical for this type of industrial setting. Note that Elkem Métal currently extracts
surface samples only. The layout of the sample bags shows the transect profile lines for the variographic analysis.

Fig. 3. Protocol for preparing composite samples as used in the present study.
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Rh tube with a Silicon Drift Detector (SDD). We ran all analyses in the
“TestAllGeo” mode with an analysis time of 60 s (Desroches et al.,
2018). HHXRF can be used with minimal sample preparation to obtain
a fast turnaround (direct measurements on mineral surfaces). As such,
we tested this instrument within an industrial setting using unprepared
quartzite; thus, conditions differed markedly from those surrounding
the laboratory-based desktop XRF run on prepared samples.

We used the XRF laboratory facilities at Elkem Métal and UQAC
were used to compare analytical results from the field (HHXRF, UQAC)
and laboratory (desktop XRF, Elkem Métal). The Elkem Métal labora-
tory is equipped with a WDX Primini (Rigaku, Tokyo, Japan), which
uses a sequential-type X-ray fluorescence spectrometer. This model can
analyze the elements fluoride (Z = 9) through uranium (Z = 92)
(Interactive Corporation, 2014). The X-ray chamber operates in an at-
mosphere controlled by P10 gas (argon/methane) having a pressure
system during analysis down to one Pa. The Pd X-ray tube has a voltage
of 40 kV and 1.25 mA.

We applied the Eurachem approach to establish the specific HHXRF
detection limits for this quartzite (Currie, 1995). This approach relies
on determining the acceptable standard deviations from repeated
measurements on samples having similar matrices but with diminishing
concentrations. Desroches et al. (2018) established detection limits of
28 ppm for TiO2, 1100 ppm for Al2O3, 66 ppm for Fe2O3, 3400 ppm for
MgO, and 66 ppm for CaO, limits that are acceptable for the needs of
this study. We recorded five measurements along a 10-cm-side block of
quartzite to improve estimate accuracy, e.g., from 21% to 12% for TiO2,
with accuracy improving even further with additional measurements,
although this decreases efficiency (Desroches et al., 2018). The quality
of analytical results is negatively affected when surfaces are not flat, as
this produces variation in the distance between the detector and the
analyzed surface. This distance is critical in XRF analysis, and more
particularly for in-situ determinations, as variation in this distance al-
ters concentration estimates (Potts et al., 1997; Potts and West 2008;
among others). Highly erratic results (2–3× above/below average)
obtained due to an irregular surface were removed from our analysis
(duely noted where/when applied).

The analytical quality will be affected by small chemical hetero-
geneities. The presence of sub-microscopic minerals having trace ele-
ments as their major constituent, such as Fe-Ti oxides (ilmenite,
FeTiO3), can alter concentration estimates significantly. The presence of
minute minerals under the XRF beam will certainly influence analysis
(Desroches et al., 2018); for example, a single grain of ilmenite (FeTiO3)
of less than 0.5 mm can increase concentrations by 0.05% TiO2, a value
close to the measured concentrations in the studied material.

With the HHXRF, we analyzed each quartzite block within a 10 kg
sample bag. We ran more than 500 in-situ analyses with the HHXRF.
We applied the grand mean of all analytical results, and we submit that
this approach provides a relevant and reliable approximation of the
composition of the full stockpile, constituting a useful datum with
which to assess all variabilities.

3. Results

3.1. Estimating the concentrations of trace impurities in the lot

Given that there is no access to a single, true value of the various
elemental concentrations of a lot, the best estimates are obtained from
the above analytical average of the 500 multiple measurements. For
industrial projects, the aim is to achieve an acceptable ‘best estimate’ at
the lowest cost; therefore, a compromise is very likely regarding the
sampling strategy. The adequate number of samples, increments,
measurements and the derived minimum mass, will depend on the
needs of the given industrial process and context and, in particular, the
degree of inherent and observed heterogeneity.

The combination of the different sample types in this study, i.e.
composite, grab, and transect samples for variographic analyses,

produced a total of 230 bags of quartz from the stockpile. We used these
samples to calculate the ‘best’ estimate of the overall trace impurity
concentrations in the entire lot and determine the associated sampling
error. We determined the relative standard deviation (RSD) of the im-
purity concentrations using both the HHXRF and desktop XRF
(Table 2).

Desktop XRF and HHXRF produced similar ranges and comparable
results, except for MgO. RSD levels for HHXRF were high as all the
remaining elements are found in very low concentrations, and Mg, Ca,
and Al are analytically ‘light elements.’ RSD values for MgO and CaO
are extremely high for the desktop XRF due to the higher sensitivity of
the desktop instrument combined with the very low absolute con-
centrations of these two elements. A full comparison of the results ob-
tained by both instruments in terms of their estimates of the composi-
tion of a quartz matrix is presented in the parallel study described in
Desroches et al. (2018).

3.2. Determination of optimal sample mass

To determine a first optimized sample mass under the constraining
requirements described above, we replicated chemical analyses on one
sample bag using the desktop Primini XRF. Accuracy has been com-
puted as the obtained result for a mass minus the weighted average
divided by average of all results in a test (Table 3). Accuracy was found
to decrease from ca. 35% to 20% as sample mass increased from 1 kg to
10 kg (Fig. 4). Considering the sample weight that can be transported
by a technician, sample preparation time, and quartz block size, 10 kg is
the de facto maximum mass in the present industrial context. Also, for
health and security reasons, a > 10 kg sample should not be used ac-
cording to industrial security norms.

3.3. Replication experiment

For sample preparation to be adequate for XRF analysis, we must
identify those steps that most contribute to the overall uncertainty of
the sampling preparation process. We use Fe as an example, as it pre-
sents typical relative sample variability values (RSV) for the entire
process; this pattern suggests that sample preparation is well controlled
(Fig. 5). The largest RSV values were produced by primary sampling,
followed by the jaw crusher stage. Typically, primary sampling pro-
duces the largest error, as this error is related to the lot heterogeneity of
the sampled material (Juran and Godfrey, 1998; DS 3077, 2013;
Esbensen and Julius, 2013). During the second step, portions of the
steel jaw and roll crushers that contact the quartz contribute to Fe
contamination and thereby increase the RSV.

3.4. Variogram

Variograms are sensitive to extreme values and outliers (Esbensen
et al., 2007). For CaO, almost half of the HHXRF values fell below
detection limits, thereby rendering these results meaningless; for this

Table 2
Analytical determinations of trace element chemistry in quartzite as determined
by desktop XRF and HHXRF. Both instruments analyzed pressed pellets.

Desktop XRF
TiO2 (wt%) Al2O3 (wt

%)
Fe2O3 (wt
%)

MgO (wt
%)

CaO (wt%)

Mean (n= 230) 0.055 0.302 0.059 0.024 0.002
RSD (%) 23.4 60.0 57.5 99.7 162.4

HHXRF
Mean (n= 230) 0.044 0.369 0.042 0.684 0.005
RSD (%) 25.2 36.1 39.6 23.7 40.4
LOD 0.0028 0.11 0.0066 0.34 0.0066

Note: For CaO, many results are below LOD; see Desroches et al. (2018). wt
% = weight % or % m/m.
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reason, we did not assess CaO. The remaining variograms (Fig. 6)
showed a random spatial variation for all major impurities, including
Fe2O3, Al2O3, MgO, and TiO2, for both the HHXRF and the desktop XRF.
The variograms were produced using a lag of 30 cm. All variograms
were of the “flat variogram”-type (known as “pure nugget effect” var-
iograms), demonstrating that there was no spatial autocorrelation even
at this low lag scale (Esbensen and Wagner, 2014; DS 3077, 2013).

HHXRF and the desktop XRF results for TiO2 were similar with a sill
of 0.08. Al2O3, Fe2O3, and MgO also produced similar flat variograms
although the HHXRF sills were smaller: 0.15 versus 0.4 for Al2O3 and
Fe2O3, 0.1 versus 0.7 for MgO. The lower sensitivity of the HHXRF

explains the lower sill values as does the lack of crushing that results in
less contamination.

A flat variogram may also reflect a situation in which the lag chosen
for characterizing the variogram is mistakenly too large for the en-
countered small-scale heterogeneity (Minnitt and Esbensen, 2017;
Engström and Esbensen, 2017a, 2017b). However, we selected a lag of
30 cm, which is the smallest scale of practical interest for this particular
industrial situation characterized by lots of ∼5000 t and mineral blocks
having a mean width of 10 cm. We submit that 30 cm is a highly re-
levant scale for the practical primary sampling.

Table 3
Total measurement accuracy for different sample masses.

Fig. 4. The relationship between accuracy and sample mass.
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3.5. Analytical performance

Comparing the concentration estimates for the ten samples analyzed
in situ using HHXRF with those obtained via desktop XRF on pressed
pellets, the desktop XRF produced better results than HHXRF for Al2O3

and Fe2O3, whereas both instruments had similar results for TiO2

(Fig. 7). We added a reference material (CRM STD Sand No. 8; Society
of Glass Technology) to test the reproducibility of the analytical
methods. In all cases, both the HHXRF and desktop XRF obtained a

lower RSD for the reference material than for the measured lot samples.
For Al2O3, concentrations were too close to the detection limits, and as
the sensitivity of the HHXRF is insufficient at such low concentrations,
we observed less variability between measurements. Moreover, Al2O3 is
a light element that is highly influenced by the quality of the sample
surface during in-situ measurements. Desktop XRF results for Fe2O3

were slightly more variable than those of HHXRF due to contamination
during sample preparation for the desktop approach. The contamina-
tion pathways included crushing, pulverizing, and the use of handling

Fig. 5. Results of the hierarchical replication experiment, used to identify error contributions from each step, from primary sampling to analysis. The vertical scale is
the relative standard deviation (RSV; %, standard deviation/average of replicated results × 100 for Fe2O3) as proposed by Esbensen and Wagner (2016).

Fig. 6. Sampling variograms comparing desktop XRF and HHXRF results for a large quartzite lot. The lag is 30 cm. Note the lack of significant autocorrelation
between samples (no range).
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iron instruments. At such low concentrations within the quartz, any Fe
from an instrument involved in sample preparation can increase the
measured concentration significantly. Both the HHXRF and desktop
XRF provided comparable results for TiO2.

3.6. Sampling performance

For Fe2O3 and TiO2, the use of composite samples reduced sampling
errors significantly. From an industrial perspective, the most important
result is that the composite sample produces less variability than the
grab samples. For elements such as Al2O3 and Fe2O3, the differences
between desktop and HHXRF were greater between grab samples than
between composite samples. For both analytical approaches, this re-
presents an analytical issue—lower sensitivity for Al2O3 and a different
sample preparation method for Fe2O3. Overall, the use of composite
samples reduced the variation between samples by about half, and thus
use of HHXRF was deemed adequate for the quality control of quartz
within the context of ferrosilicon production.

4. Conclusions

A handheld XRF instrument (HHXRF) used on a basis of deliberate
composite sampling provides more accurate sampling + in-situ analysis
than the use of conventional grab samples as analyzed by desktop XRF.
The lower error of the composite sampling is a consequence of suc-
cessful reduction of GSE + FSE errors and due to the central limit
theorem. Given that the composite sample is the sum of the contribu-
tion of each primary unit, measurements generally follow a normal
distribution even in cases where the primary samples are not normally
distributed. This occurs as the sum of the independent random variables
having finite means and variance will gravitate toward a normal dis-
tribution (Rohlf et al., 1996).

HHXRF offers the advantage of minimal sample preparation and a
fast analytical turnaround. Average lot concentrations can be estimated
within an hour, and this approach improves the control over sampling
error. However, the application of HHXRF is limited by its lower sen-
sitivity. Analytical results are also easily influenced by traces of mi-
nerals found erratically under the XRF beam and by surface quality, this
impact being more pronounced for light elements. Thus, a high number
of HHXRF scans—five for each block making up a sample bag—are
necessary and will, to a certain extent, compensate for these short-
comings. An acceptable HHXRF-based approach based on these em-
pirical results is foreseeable; nonetheless frequent assessments of ex-
perimental lot heterogeneity remain necessary. Fortunately, these

assessments are now relatively easy using the HHXRF-based approach.
The feasibility of HHXRF has been successfully demonstrated with its
intrinsic limitations. The present study outlines a basis for comparing
the pro’s and con’s in the case of a typical industrial lot size, given the
specific analytical conditions for HHXRF.
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